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We study the performance of classical and quantum machine learning (ML) models in predicting
outcomes of physical experiments. The experiments depend on an input parameter x and involve execution
of a (possibly unknown) quantum process E. Our figure of merit is the number of runs of E required to
achieve a desired prediction performance. We consider classical ML models that perform a measurement
and record the classical outcome after each run of E, and quantum ML models that can access E coherently
to acquire quantum data; the classical or quantum data are then used to predict the outcomes of future
experiments. We prove that for any input distribution DðxÞ, a classical ML model can provide accurate
predictions on average by accessing E a number of times comparable to the optimal quantumMLmodel. In
contrast, for achieving an accurate prediction on all inputs, we prove that the exponential quantum
advantage is possible. For example, to predict the expectations of all Pauli observables in an n-qubit system
ρ, classical ML models require 2ΩðnÞ copies of ρ, but we present a quantum ML model using only OðnÞ
copies. Our results clarify where the quantum advantage is possible and highlight the potential for classical
ML models to address challenging quantum problems in physics and chemistry.
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Introduction.—The widespread applications of machine
learning (ML) to practical problems have fueled interest in
machine learning using quantum platforms [1–3]. Though
many potential applications of quantum ML have been
proposed, so far the prospect for a quantum advantage in
solving purely classical problems remains unclear [4–7].
On the other hand, it seems plausible that quantum
ML can be fruitfully applied to problems faced by quantum
scientists, such as characterizing the properties of quantum
systems and predicting the outcomes of quantum
experiments [8–14].
Here, we focus on an important class of learning

problems motivated by quantum mechanics. Namely, we
are interested in predicting functions of the form

fðxÞ ¼ trðOEðjxihxjÞÞ; ð1Þ

where x is a classical input, E is an arbitrary (possibly
unknown) completely positive and trace preserving (CPTP)
map, and O is a known observable. Equation (1) encom-
passes any physical process that takes a classical input and
produces a real number as output. The goal is to construct a
function hðxÞ that accurately approximates fðxÞ after
accessing the physical process E as few times as possible.
A particularly important special case of setup (1) is

training a ML model to predict what would happen in
physical experiments [12]. Such experiments might

explore, for instance, the outcome of a reaction in quantum
chemistry [15], ground-state properties of a novel molecule
or material [11,16–21], or the behavior of neutral atoms in
an analog quantum simulator [22–24]. In these cases, the
input x subsumes parameters that characterize the process,
e.g., chemicals involved in the reaction, a description of the
molecule, or the intensity of lasers that control the neutral
atoms. The map E characterizes a quantum evolution
happening in the lab. Depending on the parameter x, it
produces the quantum state EðjxihxjÞ. Finally, the exper-
imentalist measures a certain observableO at the end of the
experiment. The goal is to predict the measurement out-
come for new physical experiments, with new values of x
that have not been encountered during the training process.
Motivated by these concrete applications, we want to

understand the power of classical and quantum ML models
in predicting functions of the form given in Eq. (1). On the
one hand, we consider classical ML models that can gather
classical measurement data fðxi; oiÞgNC

i¼1, where oi is
the outcome when we perform a POVM measurement
on the state EðjxiihxijÞ. We denote by NC the number of
such experiments performed during training in the classical
ML setting. On the other hand, we consider quantum ML
models in which multiple runs of the CPTP map E can be
composed coherently to collect quantum data, and pre-
dictions are produced by a quantum computer with access
to the quantum data. We denote by NQ the number of times
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E is used during training in the quantum setting. The
classical and quantum ML settings are illustrated in Fig. 1.
We focus on the question of whether quantum ML can

have a large advantage over classical ML: To achieve a
small prediction error, can the optimal NQ in the quantum
ML setting be much less than the optimal NC in the
classical ML setting? For the purpose of this comparison,
we disregard the runtime of the classical or quantum ML
models that generate the predictions; we are only interested
in how many times the process E must run during the
learning phase in the quantum and classical settings.
Our first main result addresses a small average predic-

tion error, i.e., the prediction error jhðxÞ − fðxÞj2 averaged
over some specified input distribution DðxÞ. We rigorously
show that, for any E, O, and D, and for any quantum ML
model, one can always design a classical ML model
achieving a similar average prediction error such that NC
is larger than NQ by at worst a small polynomial factor.
Hence, there is no exponential advantage of quantum ML
over classical ML if the goal is to achieve a small average
prediction error and if the efficiency is quantified by the
number of times E is used in the learning process. This
statement holds for existing quantum ML models running
on near-term devices [2,3,25] and future quantum ML
models yet to be conceived. We note, though, that while
there is no large advantage in query complexity, a sub-
stantial quantum advantage in computational complexity is
possible [26].

However, the situation changes if the goal is to achieve a
small worst-case prediction error rather than a small average
prediction error—an exponential separation betweenNC and
NQ becomes possible if we insist on predicting fðxÞ ¼
trðOEðjxihxjÞÞ accurately for every input x. We illustrate this
point with an example: accurately predicting expectation
values of Pauli observables in an unknown n-qubit quantum
state ρ. This is a crucial subroutine in many quantum
computing applications; see, e.g., Refs. [20,27–33]. We
present a quantum ML model that uses NQ ¼ OðnÞ copies
of ρ to predict expectation values of all n-qubit Pauli
observables. In contrast, we prove that any classical ML
model requires NC ¼ 2ΩðnÞ copies of ρ to achieve the same
task even if the ML model can perform arbitrary, adaptive,
single-copy POVM measurements.
Machine learning settings.—We assume that the observ-

able O (with kOk ≤ 1) is known, and the physical experi-
ment E is an unknown CPTP map that belongs to a set of
CPTP maps F . Apart from E ∈ F , the process can be
arbitrary—a common assumption in statistical learning
theory [34–38]. For the sake of concreteness, we assume
that E is a CPTP map from a Hilbert space of n qubits to a
Hilbert space of m qubits. Regarding inputs, we consider
bit strings of size n: x ∈ f0; 1gn. This is not a severe
restriction since floating-point representations of continu-
ous parameters can always be truncated to a finite number
of digits. We now give precise definitions for classical and
quantum ML settings; see Fig. 1 for an illustration.

FIG. 1. Illustration of classical and quantum machine learning settings. The goal is to learn about an unknown CPTP map E by
performing physical experiments. Left panel: in the learning phase of the classical ML setting, a measurement is performed after each
query to E; the classical measurement outcomes collected during the learning phase are consulted during the prediction phase. Right
panel: in the learning phase of the quantum ML setting, multiple queries to E may be included in a single coherent quantum circuit,
yielding an output state stored in a quantum memory; this stored quantum state is consulted during the prediction phase.
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Classical (C) ML.—The ML model consists of two
phases: learning and prediction. During the learning phase,
a randomized algorithm selects classical inputs xi, and we
perform a (quantum) experiment that results in an outcome
oi from performing a POVM measurement on EðjxiihxijÞ.
A total of NC experiments give rise to the classical training
data fðxi; oiÞgNC

i¼1. After obtaining this training data, the ML
model executes a randomized algorithm A to learn a
prediction model

sC ¼ Aðfðx1; o1Þ;…ðxNC
; oNC

ÞgÞ; ð2Þ

where sC is stored in the classical memory. In the prediction
phase, a sequence of new inputs x̃1; x̃2;… ∈ f0; 1gn is
provided. The ML model uses sC to evaluate predictions
hCðx̃1Þ; hCðx̃2Þ;… that approximate fðx̃1Þ; fðx̃2Þ;… up to
small errors.
Restricted classical ML.—We also consider a

restricted version of the classical setting. Rather than
performing arbitrary POVM measurements, we restrict
the ML model to measure the target observable O
on the output state Ejxiihxij to obtain the measurement
outcome oi. In this case, we always have oi ∈ R
and E½oi� ¼ trðOEðjxiihxijÞÞ.
Quantum (Q) ML.—During the learning phase, the

model starts with an initial state ρ0 in a Hilbert space of
arbitrarily high dimension. Subsequently, the quantum ML
model accesses the unknown CPTP map E a total of NQ

times. These queries are interleaved with quantum data
processing steps:

ρE ¼ CNQ
ðE ⊗ IÞCNQ−1…C1ðE ⊗ IÞðρ0Þ; ð3Þ

where each Ci is an arbitrary but known CPTP map, and we
write E ⊗ I to emphasize that E acts on an n-qubit
subsystem of a larger quantum system. The final state
ρE , encoding the prediction model learned from the queries
to the unknown CPTP map E, is stored in a quantum
memory. In the prediction phase, a sequence of new inputs
x̃1; x̃2;… ∈ f0; 1gn is provided. A quantum computer with
access to the stored quantum state ρE executes a compu-
tation to produce prediction values hQðx̃1Þ; hQðx̃2Þ;… that
approximate fðx̃1Þ; fðx̃2Þ;… up to small errors. [Because
of the noncommutativity of quantum measurements, the
ordering of new inputs matters. For instance, the two lists
x̃1; x̃2 and x̃2; x̃1 can lead to different outcome predictions
hQðx̃iÞ. Our main results do not depend on this subtlety—
they are valid, irrespective of the prediction input ordering.]
The quantum ML setting is strictly more powerful than

the classical ML setting. During the prediction phase,
classical ML models are restricted to processing classical
data, albeit data obtained by measuring a quantum system
during the learning phase. In contrast, quantumML models
can work directly with the quantum data and perform
quantum data processing. A quantum ML model can have

an exponential advantage relative to classical ML models
for some tasks, as we demonstrate in Sec. IV.
Average-case prediction error.—For a prediction model

hðxÞ, we consider the average-case prediction error

X

x∈f0;1gn
DðxÞjhðxÞ − trðOEðjxihxjÞÞj2; ð4Þ

with respect to a fixed distribution D over inputs, which
could, for instance, be the uniform distribution.
Although learning from quantum data is strictly more

powerful than learning from classical data, there are
fundamental limitations. The following rigorous statement
limits the potential for a quantum advantage.
Theorem 1: Fix an n-bit probability distribution D, an

m-qubit observable O ðkOk ≤ 1Þ, and a set F of CPTP
maps with n input qubits and m output qubits. Suppose
there is a quantum ML model that accesses the map E ∈ F
NQ times, producing, with high probability, a function
hQðxÞ that achieves

X

x∈f0;1gn
DðxÞjhQðxÞ − trðOEðjxihxjÞÞj2 ≤ ϵ: ð5Þ

Then, there is a ML model in the restricted classical setting
that accesses E NC ¼ OðmNQ=ϵÞ times and produces, with
high probability, a function hC that achieves

X

x∈f0;1gn
DðxÞjhCðxÞ − trðOEðjxihxjÞÞj2 ¼ OðϵÞ: ð6Þ

Proof sketch.—The proof consists of two parts. First, we
cover the entire set of CPTP maps F with a maximal

packing net, i.e., the largest subset S ¼ fEsgjSjs¼1 ⊂ F
such that the functions fEs

ðxÞ ¼ trðOEsðjxihxjÞÞ obeyP
x∈f0;1gn DðxÞjfEsðxÞ − fEs0 ðxÞj2 > 4ϵ whenever s ≠ s0.

We then set up a communication protocol as follows.
Alice chooses an element s of the packing net uniformly at
random, records her choice s, and then applies Es NQ times
to prepare a quantum state ρEs as in Eq. (3). Alice’s random
ensemble of quantum states is thus given by

ρEs with probabilityps ¼
1

jSj ð7Þ

for s ¼ 1;…; jSj. Alice then sends the randomly sampled
quantum state ρEs to Bob, hoping that Bob can decode the
state ρEs to recover her chosen message s. Using the
quantum ML model, Bob can produce the function
hQ;sðxÞ. Because, by assumption, the function hQ;sðxÞ
achieves a small average-case prediction error with high
probability, and because the packing net has been con-
structed so that the functions ffEsg are sufficiently distin-
guishable, Bob can determine s successfully with high
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probability. Because Alice chose from among jSj possible
messages, the mutual information of the chosen message s
and Bob’s measurement outcome must be at least of
order log jSj bits. According to Holevo’s theorem, the
Holevo χ quantity of Alice’s ensemble, Eq. (7), upper
bounds this mutual information and therefore must
also be χ ¼ Ωðlog jSÞj. Furthermore, we can analyze how
χ depends on NQ, finding that each additional application
of Es can increase χ by at most OðmÞ. We conclude
that χ ¼ OðmNQÞ, yielding the lower bound NQ ¼
ΩðlogðjSjÞ=mÞ. The lower bound applies to any quantum
MLmodel, where the size jSj of the packing net depends on
the average-case prediction error ϵ. This completes the first
part of the proof.
In the second part, we explicitly construct a MLmodel in

the restricted classical setting that achieves a small average-
case prediction error using a modest number of experi-
ments. In this ML model, an input xi is selected by
sampling from the probability distribution D, and an
experiment is performed in which the observable O is
measured in the output quantum state EðjxiihxijÞ, obtaining
the measurement outcome oi, which has the expectation
value trðOEðjxiihxijÞÞ. A total of NC such experiments are
conducted. Then, the ML model minimizes the least-
squares error to find the best fit within the aforementioned
maximal packing net S:

hC ¼ argminf∈S
1

NC

XNC

i¼1

jfðxiÞ − oij2: ð8Þ

Because the measurement outcome oi fluctuates about the
expectation value ofO, it may be impossible to achieve zero
training error. Yet, it is still possible for hC to achieve a small
average-case prediction error, potentially even smaller than
the training error. We use properties of maximal packing nets
and of quantum fluctuations of measurement outcomes to
perform a tight statistical analysis of the average-case
prediction error, finding that, with high probability,P

x∈f0;1gnDðxÞjhCðxÞ− trðOEðjxihxjÞÞj2¼OðϵÞ, provided
that NC is of order logðjSjÞ=ϵ.
Finally, we combine the two parts to conclude

NC ¼ OðmNQ=ϵÞ. The full proof is in the Supplemental
Material, App. C [39]. ▪
Theorem 1 shows that all problems that are approxi-

mately learnable by a quantum ML model are also
approximately learnable by some restricted classical
ML model that executes the quantum process E a compa-
rable number of times. This applies, in particular, to
predicting outputs of quantum-mechanical processes.
The relationNC ¼ OðmNQ=ϵÞ is tight. We give an example
in the Supplemental Material, App. D [39] with
NC ¼ ΩðmNQ=ϵÞ.
For the task of learning classical Boolean circuits,

fundamental limits on the quantum advantage have been
established in previous work [26,34,40–43]. Theorem 1

generalizes these existing results to the task of learning
outcomes of quantum processes.
Worst-case prediction error.—Rather than achieving a

small average prediction error, one may be interested in
obtaining a prediction model that is accurate for all inputs
x ∈ f0; 1gn. For a prediction model hðxÞ, we consider the
worst-case prediction error to be

max
x∈f0;1gn

jhðxÞ − trðOEðjxihxjÞÞj2: ð9Þ

Under such a stricter performance requirement, an expo-
nential quantum advantage becomes possible.
We highlight this potential by means of an illustrative

and practically relevant example: predicting expectation
values of Pauli operators in an unknown n-qubit quantum
state ρ. This is a central task for many quantum computing
applications [20,27–33]. To formulate this problem in our
framework, suppose the 2n-bit input x specifies one of the
4n n-qubit Pauli operators Px ∈ fI; X; Y; Zg⊗n, and sup-
pose that EρðjxihxjÞ prepares the unknown state ρ and maps
Px to the fixed observable O, which is then measured;
hence,

fðxÞ ¼ trðOEρðjxihxjÞÞ ¼ trðPxρÞ: ð10Þ

In this setting, according to Theorem 1, there is no large
quantum advantage if our goal is to estimate the Pauli
operator expectation values with a small average prediction
error. However, an exponential quantum advantage is
possible if we insist on accurately predicting every one
of the 4n Pauli observables.
First, we show that there is an efficient quantum ML

model that achieves a small prediction error. Details are
given in the Supplemental Material, App. E 2 [39]; here, we
just sketch the main ideas. The procedure for predicting
trðPxρÞ has two stages. The goal of the first stage is to
predict the absolute value jtrðPxρÞj for each x, and the goal
of the second stage is to determine the sign of trðPxρÞ. The
key idea used in the first stage is that, although two
different Pauli operators Px and Py may either commute
or anticommute, the tensor products Px ⊗ Px and Py ⊗ Py

mutually commute for all x and y. Therefore, although it is
not possible to measure anticommuting Pauli operators
simultaneously using a single copy of the state ρ, it is
possible to measure Px ⊗ Px simultaneously for all x using
two copies of ρ. Indeed, all 4n expectation values trððPx ⊗
PxÞðρ ⊗ ρÞÞ ¼ trðPxρÞ2 can be determined by measuring
pairs of qubits in the Bell basis, which is highly efficient.
This completes the first stage.
If jtrðPxρÞj is found to be small in the first stage, we

may predict hðxÞ ¼ 0 and be assured that the prediction
error is small. Therefore, in the second stage, we need
only determine the sign if jtrðPxρÞj is found to be
reasonably large in the first stage. In that case, we can
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perform a coherent measurement across several copies of
ρ, which performs a majority vote and yields the correct
value of the sign with a high probability of success.
Because the measurement is strongly biased in favor of
one of the two possible outcomes, it introduces only a very
“gentle” disturbance of the premeasurement state.
Therefore, by performing many such measurements in
succession on the same quantum memory register, we can
determine the sign of trðPxρÞ for many different values of
x. The second stage can also be more amenable to near-
term implementation using a heuristic that groups com-
muting observables [30,31]; See the Supplemental
Material, App. E 2 d [39] for further discussion. Each
of the two stages requires only a small number of copies of
ρ; a careful analysis yields the following theorem.
Theorem 2: The quantum ML model only needs NQ ¼

OðlogðM=δÞ=ϵ4Þ copies of ρ to predict expectation values
of any M Pauli observables to an error ϵ with a probability
of at least 1 − δ.
More details regarding the quantum ML model, as well

as a rigorous proof, are provided in the Supplemental
Material, App. E 2 [39]. The sample complexity stated in
Theorem 2 improves upon previously known shadow
tomography protocols [29,44–46] for the special case of
predicting Pauli observables; see Supplemental Material,
App. A [39]. Because each access to Eρ allows us to obtain
one copy of ρ, we only need NQ ¼ OðnÞ to predict
expectation values of all 4n Pauli observables up to a
constant error.
For classical ML models, we prove the following

fundamental lower bound; see Supplemental Material,
App. E 4 [39].
Theorem 3: Any classical ML must use NC ≥ 2ΩðnÞ

copies of ρ to predict expectation values of all Pauli
observables up to a small error with a constant success
probability.
This theorem holds even when the POVM measure-

ments performed by the classical ML model depend on the
previous POVM measurement outcomes adaptively.
When combined with Theorem 2, Theorem 3 establishes
an exponential gap separating classical ML models

from fully quantum ML models. Figure 2 provides a
summary of the upper and lower bounds on the sample
complexity for predicting expectation values of Pauli
observables.
Numerical experiments.—We support our theoretical

findings with numerical experiments, focusing on the task
of predicting the expectation values of all 4n Pauli
observables in an unknown n-qubit quantum state ρ, with
a small worst-case prediction error. In this case, the
function is fðxÞ ¼ trðOEρðjxihxjÞÞ ¼ trðPxρÞ, where x ∈
fI; X; Y; Zgn indexes the Pauli observables, and Eρ pre-
pares the unknown state ρ and then maps Px to the fixed
observable O. This is the task we considered previously.
Note that the average-case prediction of Pauli observables
is a much easier task because most of the 4n expectation
values are exponentially small in n.
We consider two classes of underlying states ρ: (i) Mixed

states: ρ ¼ ðI þ PÞ=2n, where P is a tensor product of n
Pauli operators. States in this class have rank 2n−1.
(ii) Product states: ρ ¼⊗n

i¼1 jsiihsij, where each jsii is
one of the six possible single-qubit stabilizer states. We
consider stabilizer states to ensure that classical simulation
of the quantumMLmodel is tractable for a reasonably large
system size.
The numerical experiment in Fig. 3 implements the

best-known ML procedures. We can clearly see that there
is an exponential separation between the number of copies
of the state ρ required for classical and quantum ML to
predict expectation values when ρ is in the class of mixed
states. However, for the class of product states, the
separation is much less pronounced. Restricted classical
ML can only obtain outcomes oi ∈ f�1g with
E½oi� ¼ trðPxiρÞ. Hence, each copy of ρ provides at most
one bit of information, and therefore OðnÞ copies are
needed to predict expectation values of all 4n Pauli
observables. In contrast, standard classical ML can per-
form arbitrary POVM measurements on the state ρ, so
each copy can provide up to n bits of information. The

FIG. 2. Sample complexity for predicting expectations of all 4n

Pauli observables (worst-case prediction error) in an n-qubit
quantum state. “Upper bound” is the achievable sample complex-
ity of a specific algorithm. “Lower bound” is the lower bound for
any algorithm. The classical ML upper bound can be achieved
using classical shadows based on random Clifford measurements
[29]. The rest of the bounds are obtained in the Supplemental
Material, App. E [39].

FIG. 3. Numerical experiments—number of copies of an
unknown n-qubit state needed for predicting expectation values
of all 4n Pauli observables, with a constant worst-case prediction
error. Mixed states: quantum states of the form ðI þ PÞ=2n, where
P is an n-qubit Pauli observable. Product states: tensor products
of single-qubit stabilizer states.
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separation between classical ML and quantum ML is
marginal for product states.
Conclusion and outlook.—We have studied the task of

learning functions of the form in Eq. (1), using as a figure
of merit the number of runs of E. Our main result, Theorem
1, shows that, when the objective is achieving a specified
average prediction error, a classical ML model can perform
as well as a quantum ML model, using a comparable
number of runs of E. This result establishes a fundamental
limit on the quantum advantage in machine learning that
holds for any quantum ML model [2,3,25].
From a different perspective, Theorem 1 means that the

classical ML setting, in which a measurement is performed
after each query to E, can be surprisingly effective. The
quantum ML setting, in which multiple queries to E can be
included in a single coherent quantum circuit, is far more
challenging and may not be feasible until far in the future.
Therefore, finding that classical and quantum ML have
comparable power (for the average-case prediction) boosts
our hopes that the combination of classical ML and near-
term quantum algorithms [2,3,25,28,47] may fruitfully
address challenging quantum problems in physics, chem-
istry, and materials science.
On the other hand, Theorems 2 and 3 rigorously establish

that quantum ML can have an exponential advantage over
classical ML for certain problems where the objective is to
achieve a specified worst-case prediction error. This expo-
nential advantage of quantum ML over classical ML may
be viewed as an exponential separation between coherent
measurements (in which a measurement apparatus interacts
coherently multiple times with a measured system, storing
quantum data that are then processed by a quantum
computer) and incoherent measurements (in which a
POVM measurement is performed and the outcome
recorded after each interaction between the system and
apparatus, and the classical measurement outcomes are
then processed by a classical computer). Such a separation
has been challenging to establish because incoherent
measurements are difficult to analyze in the adaptive
setting, where each measurement performed may depend
on the outcomes of all previous measurements. Our proof
technique overcomes this challenge, enabling us to identify
tasks that allow a substantial quantum advantage. An
important future direction will be to identify further
learning problems that allow a substantial quantum advan-
tage, pointing toward potential practical applications of
quantum technology.
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