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We investigate the energy-constrained (EC) diamond norm distance between unitary channels acting on
possibly infinite-dimensional quantum systems, and establish a number of results. First, we prove that
optimal EC discrimination between two unitary channels does not require the use of any entanglement.
Extending a result by Acín, we also show that a finite number of parallel queries suffices to achieve zero
error discrimination even in this EC setting. Second, we employ EC diamond norms to study a novel type of
quantum speed limits, which apply to pairs of quantum dynamical semigroups. We expect these results to
be relevant for benchmarking internal dynamics of quantum devices. Third, we establish a version of the
Solovay-Kitaev theorem that applies to the group of Gaussian unitaries over a finite number of modes, with
the approximation error being measured with respect to the EC diamond norm relative to the photon
number Hamiltonian.
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Introduction.—The task of distinguishing unknown
objects is arguably a fundamental one in experimental
science. Quantum state discrimination, one of the simplest
examples of a problem of this sort, has gained a central role
in the flourishing field of quantum information science.
The optimal measurement for discriminating between
two quantum states via quantum hypothesis testing was
found by Holevo and Helstrom [1–4]. Subsequent
fundamental contributions related to state discrimination
include the operational interpretation of quantum relative
entropy [5] and of a related entanglement measure via
quantum generalizations of Stein’s lemma [6–8], the
identification of a quantum Chernoff bound for symmetric
hypothesis testing [9–11], and the discovery of quantum
data hiding [12–16].
While quantum states are simpler objects, quantum

processes, or channels, are more fundamental [17]. The
basic primitive in distinguishing them is that of binary
channel discrimination: two distant parties, Alice and Bob,
are granted access to one query of one of two channels N
and M, with a priori probabilities p and 1 − p, and they
have to guess which channel was chosen. The best strategy
consists of Alice preparing a (possibly entangled) bipartite
state jΨiAA0 , sending the system A through the noisy
channel, and the auxiliary system (or ancilla) A0 through
an ideal (noiseless) channel to Bob, who then performs
state discrimination on the bipartite system AA0

that he receives. When bothN andM are unitary channels,
however, the auxiliary system is not needed [18] (cf.
Theorem 3.55 in Ref. [19]). Experimentally, this

simplification is helpful, as it exempts us from using:
(a) an ancilla and entanglement; and (b) an ideal side
channel, which might be technologically challenging.
More insight into the channel distinguishability problem

can be gained by looking at multiquery discrimination
[20–22]. When the channels are unitary, a seminal result by
Acín states that perfect discrimination is possible with
only a finite number of queries [23,24], a phenomenon that
has no analogue for states [25]. The same result can be
achieved by using an adaptive strategy that requires no
entanglement [26].
It is common to assume that any arbitrary quantum

operation can be employed for the discrimination task at
hand. This is, however, often unrealistic, due to techno-
logical as well as physical limitations. This is the case, e.g.,
when the quantum states (respectively, the channels) to be
discriminated are distributed among (respectively, connect)
two parties who can only employ local operations assisted
by classical communication. Such a restriction could
severely hinder the discrimination power, both for states
[12–16] and for channels [27,28].
Another example of physical restriction comes about,

for instance, when one studies continuous-variable (CV)
quantum systems, e.g., collections of electromagnetic
modes traveling along an optical fiber. This setting, which
constitutes the basis of practically all proposed protocols
for quantum communication, is of outstanding techno-
logical and experimental relevance [29–32]. Accordingly,
the theoretical study of CV quantum channels is a core
area of quantum information [33–35]. CV channel
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discrimination can be thought of as a fundamental primitive
for benchmarking such channels.
When accessing a CV quantum system governed

by a Hamiltonian H, one only has access to states ρ
with bounded mean energy Tr½ρH� ≤ E. This fundamen-
tally unavoidable restriction motivates us to look into
energy-constrained (EC) channel discrimination [21,36–
38]. In our setting, we separate the energy cost of
manufacturing probes from that of measuring the output
states [39], and only account for the former. This is
justified operationally by thinking of the unknown chan-
nel (either N or M) as connecting an EC client to a
quantum computing server that has access to practically
unlimited energy. In the above context, the figure of merit
is the so-called EC diamond norm distance kN −MkH;E⋄
[36,37,40].
In this Letter, we (1) study the EC diamond norm

distance between unitary channels, and employ it to
establish (2) operationally meaningful quantum speed
limits [41] for experimentally relevant Hamiltonians, as
well as (3) a Solovay-Kitaev theorem [42,43] for Gaussian
(i.e., symplectic) unitaries. Our first result states that
optimal EC discrimination of two unitary channels does
not require any entanglement (Theorem 1). This extends
the analogous result for unconstrained discrimination (c.f.
Theorem 3.55 in Ref. [19]). In the same setting, we then
generalize Acín’s result [23], proving that a finite number
of parallel queries suffices to achieve zero error
(Theorem 2).
We then employ the EC diamond norm distance to

quantify in an operationally meaningful way the speed at
which time evolutions under two different Hamiltonians
drift apart from each other (Theorem 3). Our result amounts
to a quantum speed limit [41] that applies to a more general
setting than previously investigated [44–57], namely, that
involving two different unitary groups. As a special case,
we study evolutions induced by quadratic Hamiltonians
on a collection of harmonic oscillators (Corollary 4).
Analogous estimates are then given for the case in which
one of the two channels models an open quantum system
(Theorem 5) [58].
Our last result is a Solovay-Kitaev theorem [42,43] for

Gaussian unitaries (Theorem 6). It states that any finite set
of gates generating a dense subgroup of the symplectic
group can be used to construct short gate sequences that
approximate well, in the EC diamond norm corresponding
to the photon number Hamiltonian, any desired Gaussian
unitary. The significance of our result rests on the compel-
ling operational interpretation of the EC diamond norm in
terms of channel discrimination: the action of the con-
structed gate will be almost indistinguishable from that of
the target on all states with a certain maximum average
photon number.
The setting.—Quantum states on a Hilbert space H are

represented by density operators, i.e., positive trace-class

operators with trace one, on H. Quantum channels are
modeled by completely positive and trace preserving
(CPTP) maps acting on the space of trace-class operators
onH. A Hamiltonian onH is a densely defined self-adjoint
operator H whose spectrum spðHÞ is bounded from below.
Up to redefining the ground state energy, we can assume
that min spðHÞ ¼ 0, in which case we call H grounded. In
what follows, for a pure state jψi ∈ H, we will denote with
ψ ≔ jψihψ j the corresponding density matrix.
CV quantum systems, i.e., finite collections of harmonic

oscillators, or modes, are central for applications [33,34].
The Hilbert space of an m-mode system is formed by all
square-integrable functions on Rm, and is denoted by
Hm ≔ L2ðRmÞ. The creation and annihilation operators
corresponding to the jth mode (j ¼ 1;…; m) will be
denoted by a†j and aj, respectively. They satisfy the

canonical commutation relations (CCRs) ½aj; a†k� ¼ δjk.
In the (equivalent) real picture, one defines the position
and momentum operators xj ≔ ðaj þ a†jÞ=

ffiffiffi
2

p
and

pj ≔ ðaj − a†jÞ=ð
ffiffiffi
2

p
iÞ, organized in the vector

R ≔ ðx1; p1;…; xm; pmÞ⊺. The CCRs now read
½R;R⊺� ¼ iΩm, with Ωm ≔ ð 0

−1
1
0
Þ⊕m. Gaussian unitaries

are products of exponentials e−ði=2ÞR⊺QR, where Q is an
arbitrary 2m × 2m symmetric matrix, and 1

2
R⊺QR is called

a quadratic Hamiltonian. Gaussian unitaries are in one-to-
one correspondence with symplectic matrices via the
relation US ↔ S defined by U†

SRjUS ¼
P

k SjkRk. The
corresponding unitary channel will be denoted with
USð·Þ ≔ USð·ÞU†

S. Recall that a 2m × 2m real matrix S is
called symplectic if SΩmS⊺ ¼ Ωm, and that symplectic
matrices form a group, hereafter denoted by Sp2mðRÞ [59].
The energy cost of a channel discrimination protocol

comes from two main sources: first, the preparation of the
probe state to be fed into the unknown channel, and,
second, the subsequent quantum measurement, which
inescapably requires energy to be carried out [39]. In this
Letter we consider only the first contribution, i.e., the
energy cost of the probe. Operationally, we can separate the
above two contributions by considering the following
setting. An unknown channel, either N A→B (with a priori
probability p) or MA→B (with a priori probability 1 − p)
connects two distant parties, Alice (the sender) and
Bob (the receiver). We assume that Alice’s equipment
only allows for the preparation of probe states with an
average energy at most E, as measured by some positive
Hamiltonian HA ≥ 0 on the input system. No such restric-
tion is placed on Bob, who can carry out any measurement
he desires, and whose task is that of guessing the channel.
We can further distinguish two possibilities: (i) Alice is
limited to preparing states ρA on the input system A, to be
sent to Bob via the unknown channel; or (ii) she can prepare
a (possibly entangled) state ρAA0 , where A0 is an arbitrary
ancilla, and send also A0 to Bob via an ideal (noiseless)
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channel. The energy constraint reads Tr½ρAHA� ≤ E, where
in case (ii) we set ρA ≔ TrA0ρAA0 . The error probability
corresponding to (ii) takes the form PH;E

e ðN ;M;pÞ ¼
1
2
ð1 − kpN − ð1 − pÞMkH;E⋄ Þ, where for a superoperator

LA that preserves self-adjointness the EC diamond norm is
defined by

kLAkH;E⋄ ¼ sup
jΨiAA0 ∶

TrΨAHA≤E

kðLA ⊗ idA0 ÞðΨAA0 Þk1; ð1Þ

where k · k1 is the trace norm, while the supremum is over
all states jΨiAA0 on AA0, with A0 being an ancilla, whose
reduced state on A has energy bounded by E. A similar
expression but without A0 holds in setting (i).
Results.—Throughout this section we discuss our main

findings. Complete proofs as well as additional technical
details can be found in the Supplemental Material [60].
(1) EC discrimination of unitaries: Our first result states

that the above settings (i) and (ii) are equivalent in the case
of two unitary channels. This generalizes the seminal result
of Aharonov et al. [18] (cf. Theorem 3.55 in Ref. [19]), and
implies that optimal EC discrimination of unitaries can be
carried out without the use of any entanglement.
Theorem 1. Let U, V be two unitaries acting on a

Hilbert space of dimension dimH ≥ 3, and call
Uð·Þ ≔ Uð·ÞU†, Vð·Þ ≔ Vð·ÞV† the associated channels.
Let H be a grounded Hamiltonian, and fix E > 0. Then

kU − VkH;E⋄ ¼ sup
hψ jHjψi≤E

kðU − VÞðψÞk1

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − inf

hψ jHjψi≤E
jhψ jU†Vjψij2

r
:

ð2Þ

In other words, in this case the supremum in Eq. (1) can be
restricted to unentangled pure states.
The above result can be used to estimate the EC diamond

norm distance between displacement channels. These
are defined for z ∈ R2m by Dzð·Þ ≔ DðzÞð·ÞDðzÞ†, where
DðzÞ ≔ e−i

P
j
ðΩmzÞjRj . Letting N ≔

P
j a

†
jaj be the total

photon number Hamiltonian, one has that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−e−kz−wk2fðEÞ2

p
≤
1

2
kDz−DwkN;E⋄

≤ sin

�
min

�
kz−wkfðEÞ;π

2

��
;

fðEÞ≔ 1ffiffiffi
2

p ð
ffiffiffiffi
E

p
þ ffiffiffiffiffiffiffiffiffiffiffi

Eþ1
p Þ:

ð3Þ

Using the structure of the symplectic group, we also
obtain the following upper bound for the difference of
two symplectic unitaries: given S, S0 ∈ Sp2mðRÞ,

1

2
kUS−US0 kN;E⋄ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð
ffiffiffi
6

p
þ

ffiffiffiffiffi
10

p
þ5

ffiffiffi
2

p
mÞðEþ1Þ

q
gðkðS0Þ−1Sk∞Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðS0Þ−1S− Ik2

q
;

gðxÞ≔
ffiffiffiffiffiffiffiffiffiffi
π

xþ1

r
þ

ffiffiffiffiffi
2x

p
;

ð4Þ

where k · k∞ and k · k2 denote the operator norm and the
Hilbert-Schmidt norm, respectively. We can also exploit
Theorem 1 to immediately extend a celebrated result by
Acín [23] (see also Refs. [25,26]), and establish that even in
the presence of an energy constraint (which is particularly
relevant in the case of unitaries acting on CV quantum
systems), a finite number of parallel queries achieves zero-
error discrimination.
Theorem 2. In the setting of Theorem 1, there exists a

positive integer n such that n parallel uses of U and V can
be discriminated perfectly using inputs of finite total energy
E, i.e.,

kU⊗n − V⊗nkHðnÞ; E⋄ ¼ 2; ð5Þ

where HðnÞ ≔
P

n
j¼1 Hj is the n-copy Hamiltonian, and

Hj ≔ I ⊗ � � � ⊗ I ⊗ H ⊗ I ⊗ � � � ⊗ I, with the H in the
jth location.
(2) Quantum speed limits: Our first application deals

with the problem of quantifying the relative drift caused by
two different unitary dynamics on a quantum system. This
may be important, for instance, in benchmarking internal
Hamiltonians of quantum devices.
In what follows, our findings are generally presented in

the form of an upper bound on the EC diamond norm
distance between time evolution channels. This is an
alternative yet completely equivalent reformulation of a
quantum speed limit. To recover the standard one [41], one
has to turn the inequality around and recast it as a lower
bound on the time taken to reach a certain prescribed
distance [60]. Our first result extends previous findings by
Winter [[37], Theorem 6] and some of us [[57], Proposition
3.2] by tackling the case of two different unitary groups.
Theorem 3. Let H, H0 be self-adjoint operators.

Without loss of generality, assume that 0 is in the spectrum
of H. Let the “relative boundedness” inequality

kðH −H0Þjψik ≤ αkHjψik þ β ð6Þ

hold for some constants α, β > 0 and for all (normalized)
states jψi. Then the unitary channels

U tð·Þ ≔ e−iHtð·ÞeiHt; Vtð·Þ ≔ e−iH
0tð·ÞeiH0t ð7Þ

satisfy the following: for all t ≥ 0 and E > 0,

kU t − VtkjHj;E⋄ ≤ 2
ffiffiffi
2

p ffiffiffiffiffiffiffiffi
αEt

p
þ

ffiffiffi
2

p
βt: ð8Þ
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Let us note that Eq. (8) admits a simple reformulation in
terms of the Loschmidt echo operator Mt ≔ eiH

0te−iHt

[60,91]. The relative boundedness condition (6) is not
merely an artefact of the proof, and is there to ensure that
low energy eigenvectors of H do not have very high
energies relative to H0, which would trivialize the bound
Eq. (8). The estimate in Eq. (8) can be shown to be optimal
up to multiplicative constants: in general, the diffusive term
proportional to

ffiffi
t

p
cannot be removed even for very small

times (see Sec. III.B in the SM [60]).
A special case of Theorem 3 that is particularly relevant

for applications is that of two quadratic Hamiltonians on a
collection of m harmonic oscillators, or modes.
Corollary 4. On a system of m modes,

consider the two Hamiltonians H ¼Pm
j¼1 dja

†
jaj

and H0 ¼Pm
j;k¼1 ðXjka

†
jak þ Yjkajak þ Y�

jka
†
ja

†
kÞ, where

dj > 0 for all j, and X, Y are two m ×m matrices, with
X Hermitian. Then the corresponding unitary channels in
Eq. (7) satisfy Eq. (8) for all t ≥ 0 and E > 0, with

α ¼ kD−1k
 ffiffiffi

3

2

r
kX −Dk2 þ

 
1þ

ffiffiffi
3

2

r !
kYk2

!
;

β ¼ m − 1ffiffiffi
2

p kX −Dk2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mþ 1Þ2

2
þ 2m2

r
kYk2;

ð9Þ

where Djk ≔ djδjk.
We now look at the more general scenario where the

discrimination is between a closed-system unitary evolu-
tion and an open-system quantum dynamics. We expect this
task to be critical, e.g,. in benchmarking quantum memo-
ries, where the effects of external interactions are detri-
mental and must be carefully controlled. Open quantum
systems are described by quantum dynamical semigroups
(QDSs) [92,93], i.e., families of channels ðΛtÞt≥0 that
(i) obey the semigroup law, Λtþs ¼ Λt∘Λs for t, s ≥ 0,
and (ii) are strongly continuous, in the sense that
limt→0þ kΛtðρÞ − ρk1 ¼ 0 for all ρ. QDSs take the form
Λt ¼ etL, where the generatorL is assumed to be of Gorini-
Kossakowski-Lindblad-Sudarshan (GKLS) type [94–96]
and acts on an appropriate dense subspace of the space
of trace class operators as

LðXÞ ¼ −i½H;X� þ 1

2

X
l

ð2LlXL
†
l − L†

lLlX − XL†
lLlÞ:

ð10Þ

Here, H is the internal Hamiltonian, while the Lindblad
operators Ll (l ¼ 1; 2;…) model dissipative processes. In
our approach these can be unbounded, and hence our
results significantly generalize previous works on quantum
speed limits in open systems [58].
Theorem 5. Let H be a self-adjoint operator with 0 in

its spectrum, and set U tð·Þ ≔ e−iHtð·ÞeiHt. Let ðΛtÞt≥0 be a

QDS whose generator L is of GKLS type and satisfies the
relative boundedness condition

1

2

����X
l

L†
lLljψi

���� ≤ αkHjψik þ β ð11Þ

for all (normalized) states jψi, where β ≥ 0 and 0 ≤ α < 1
are two constants. Then it holds that

kU t − ΛtkjHj;E⋄ ≤ 4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

p
αEt

q
þ βt

	
ð12Þ

for all t ≥ 0 and E > 0.
Once again, the role of condition (11) is that of ensuring

that the Lindblad operators do not make low energy
levels decay too rapidly, an effect that we could exploit
to design a simple discrimination protocol with a small
energy budget. We now demonstrate the applicability
of our result by looking at the example of quantum
Brownian motion [61,62]. Consider a single quantum
particle in one dimension, subjected to a harmonic
potential and to a diffusion process. The Hilbert
space is H1 ¼ L2ðRÞ; we set H ¼ 1

2
ðx2 þ p2Þ and Ll ¼

γlxþ iδlp (l ¼ 1, 2), where p ≔ −iðd=dxÞ is the momen-
tum operator, and γl, δl ∈ C. In this case Eq. (11) is
satisfied, e.g., with α ¼ ðjγ1j þ jδ1jÞ2 þ ðjγ2j þ jδ2jÞ2, pro-
vided that the right-hand side is smaller than 1, and
β ¼ jγ1jjδ1j þ jγ2jjδ2j þ κ, where κ ¼ 0.2047 is a constant
[60]. Therefore, Eq. (12) yields an upper estimate on the
operational distinguishability between closed and open
dynamics for given waiting time and input energy.
(3) A Gaussian Solovay-Kitaev theorem: The celebrated

Solovay-Kitaev theorem [42,43] is a fundamental result in
the theory of quantum computing. In layman’s terms, it
states that any finite set of quantum gates that generates a
dense subgroup of the special unitary group is capable of
approximating any such desired unitary by means of short
sequences of gates. In practice, many of the elementary
gates that form the toolbox of CV platforms for quantum
computing [29,97] are modeled by Gaussian unitaries.
Therefore, a Gaussian version of the Solovay-Kitaev
theorem is highly desirable. In establishing our result,
we measure the approximation error for gates on an
m-mode quantum system by means of the operationally
meaningful EC diamond norm distance relative to the total
photon number Hamiltonian N ¼Pm

j¼1 a
†
jaj.

Theorem 6. Let m ∈ N, r > 0, E > 0 and definefSpr
2mðRÞ to be the set of all symplectic transformations

S such that kSk∞ ≤ r. Then, given a set G of gates that is
closed under inverses and generates a dense subset offSpr

2mðRÞ, for any symplectic transformation S ∈ fSpr
2mðRÞ

and every 0 < δ, there exists a finite concatenation S0 of
polyðlog δ−1Þ elements from G, which can be found in time
polyðlog δ−1Þ and such that
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kUS − US0 kN;E⋄ ≤ FðmÞGðrÞ ffiffiffiffiffiffiffiffiffiffiffiffi
Eþ 1

p ffiffiffi
δ

p
; ð13Þ

where USð·Þ ≔ USð·ÞU†
S, and

FðmÞ ≔ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

p
ð
ffiffiffi
6

p
þ

ffiffiffiffiffi
10

p
þ 5

ffiffiffi
2

p
mÞ

q
;

GðrÞ ≔ ð ffiffiffi
π

p þ
ffiffiffi
2

p
ðrþ 2ÞÞ ffiffiffiffiffiffiffiffiffiffiffi

rþ 2
p

:

The above result guarantees that any Gaussian unitary
can be approximated with a relatively short sequence of
gates taken from our base set. Note that the sequence
length increases with both the squeezing induced
by S (quantified by the parameter kSk∞) and the energy
threshold E. Theorem 6 also guarantees that finding the
relevant gate sequence is a computationally feasible task,
thus bolstering the operational significance of the result.
Finally, in the Supplemental Material [60] we show that
sets of the form G ¼ K ∪ fSg, where K generates a dense
subgroup of the passive Gaussian unitary group and S is
an arbitrary nonpassive Gaussian unitary, satisfy the
denseness assumption of Theorem 6.
Conclusions.—We investigated the EC diamond norm

distance between channels, which has a compelling
operational interpretation in the context of EC channel
discrimination. For the case of two unitary channels, we
showed that optimal discrimination can be carried out
without using any entanglement, and with zero error
upon invoking finitely many parallel queries. An open
question here concerns the possibility of obtaining the
same result by means of adaptive rather than parallel
strategies. This is known to be possible in the finite-
dimensional, energy-unconstrained scenario [26].
We then studied some problems where the EC diamond

norm can be employed to quantify in an operationally
meaningful way the distance between quantum operations.
We provided quantum speed limits that apply to the
conceptually innovative setting where one compares two
different time evolution (semi-)groups, instead of looking
at a single one, as previously done.
Finally, we established a Gaussian version of the

Solovay-Kitaev theorem, proving that any set of
Gaussian unitary gates that is sufficiently powerful to be
capable of approximating any desired Gaussian unitary can
do so also efficiently, i.e., by means of a relatively small
number of gates. Our result bears a potential impact on the
study of all those quantum computing architectures that
rely on optical platforms.
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