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We study the detection of continuous-variable entanglement, for which most of the existing methods
designed so far require a full specification of the devices, and we present protocols for entanglement
detection in a scenario where the measurement devices are completely uncharacterized. We first generalize,
to the continuous variable regime, the seminal results by Buscemi [Phys. Rev. Lett. 108, 200401 (2012)]
and Branciard et al. [Phys. Rev. Lett. 110, 060405 (2013)], showing that all entangled states can be detected
in this scenario. Most importantly, we then describe a practical protocol that allows for the measurement-
device-independent certification of entanglement of all two-mode entangled Gaussian states. This protocol
is feasible with current technology as it makes use only of standard optical setups such as coherent states
and homodyne measurements.
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Introduction.—Entanglement is the main resource for a
broad range of applications in quantum information sci-
ence, among which are quantum key distribution [1],
quantum computation [2], and quantum metrology [3].
It is therefore crucial to develop methods to detect
entanglement that are reliable and practical. The most
common method to detect entanglement is given by
entanglement witnesses [4]. However, to be reliable this
technique requires a perfect implementation of the mea-
surements. Indeed, small calibration errors can lead to
false-positive detection of entanglement [5,6], which can be
critical when using the wrongly detected entangled state for
quantum information purposes. A possible way of circum-
venting this problem is to move into the so-called device-
independent (DI) scenario [7]. In this framework measure-
ments do not need to be characterized, since entanglement
is detected through the violation of Bell inequalities, which
only use the statistics provided by the experiment, without
making any assumptions on the real implementation. The
DI scenario is however stringent from an experimental
point of view, requiring low levels of noise and high
detection efficiencies. This is why other approaches requir-
ing an intermediate level of trust on the devices have been
developed. In particular, there exist methods that do not
require any characterization of the measurement imple-
mented for entanglement detection, known as measurement
device independent (MDI) [8,9].
Here, we consider the problem of entanglement detec-

tion in continuous-variable (CV) systems, for which
very little is known about methods not requiring a full

characterization of measurement devices. A fully DI
approach is complex because of the difficulty of finding
useful Bell tests for continuous-variable states. For in-
stance, in the Gaussian regime, which is the most feasible
experimentally, DI entanglement detection is impossible
because no Bell inequality can be violated [7], hence
intermediate approaches are necessary. The main goal of
this work is to provide methods for MDI entanglement
detection in CV systems. We first demonstrate that, in
principle, all entangled states can be detected in this
scenario. Then, we describe a MDI protocol that can detect
the entanglement of all two-mode Gaussian states. Our
protocol only relies on the use of trusted, well-calibrated,
sources of coherent states, the easiest to prepare in the lab.
An entanglement detection scenario where two parties,

Alice and Bob, do not assume a particular description of
their measurement but use trusted sources of states was
first introduced by Buscemi [8]. Namely, let us consider
that Alice and Bob can produce states ψμ

A0 and ψν
B0

according to some distributions PA0 ðμÞ, PB0 ðνÞ, respec-
tively. Alice and Bob can use these states as inputs to their
measurement devices, which return outcomes a and b,
respectively. These outcomes occur with probability
Pða; bjψμ

A0 ;ψν
B0 Þ ¼ Tr½Ma

AA0 ⊗ Nb
BB0 ðψμ

A0 ⊗ ρAB ⊗ ψν
B0 Þ�,

whereMa
AA0 and Nb

BB0 are unknown measurement operators
defining a positive-operator valued measure (POVM). The
main goal of Alice and Bob is to determine if ρAB is
entangled based on the knowledge of ψμ

A0 , ψν
B0 , PA0 ðμÞ,

PB0 ðνÞ, and Pða; bjψμ
A0 ;ψν

B0 Þ. Besides the calibration
issue discussed before, this scenario is motivated by
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cryptographic tasks in which Alice and Bob do not trust the
provider of the measurement devices they are using
[10–13].
For finite dimensional Hilbert spaces, Buscemi has

shown that any entangled state ρAB can be certified in this
scenario, but his proof is not constructive [8]. The authors
of Ref. [9] have shown how to construct a MDI entangle-
ment witness from standard entanglement witnesses. A
different route was considered in Refs. [14,15], where the
question was formulated as a convex optimization problem
that can be efficiently solved numerically.
In what follows we first generalize the results of

Refs. [8,9] and show that the entanglement of every CV
entangled state can in principle be detected in a MDI
scenario. We then move to the experimentally relevant case
of Gaussian states and operations and show a MDI protocol
that is able to certify the entanglement of all two-mode
Gaussian entangled states. This protocol is feasible with
current technology in that it only requires the production of
coherent states and the implementation of homodyne
measurements. Moreover, our approach provides an inter-
esting connection between MDI entanglement detection
and quantum metrology.
Reduction to process tomography.—In this section, we

show that it is possible to detect the entanglement of any
entangled state in a MDI scenario where Alice and Bob use
coherent states as trusted inputs (the proof is presented for
two-mode bipartite states but can be generalized to n
modes, see Ref. [16]).
Suppose Alice and Bob are in possession of trusted

sources producing coherent states jαiA0 and jβiB0 , res-
pectively, according to some distribution. The shared
entangled state is ρAB. The systems AA0 and BB0 are then
projected onto respective two-mode squeezed vacuum
(TMSV) states, i.e., the measurement fjΦðrÞihΦðrÞj; 1 −
jΦðrÞihΦðrÞjg is performed on both AA0 and BB0 (r is the
squeezing parameter). Conditioned on α and β, the prob-
ability of both measurements obtaining output “1,” corre-
sponding to the projector jΦðrÞihΦðrÞj≡ΦðrÞ, can be
expressed as

Pρð1; 1jα; βÞ
¼ Tr½ðΦðrÞ

AA0 ⊗ ΦðrÞ
BB0 ÞðjαihαjA0 ⊗ ρAB ⊗ jβihβjB0 Þ�

¼ Tr½MðrÞ
A0B0 jαihαjA0 ⊗ jβihβjB0 �; ð1Þ

where we have defined

MðrÞ
A0B0 ≔ TrAB½ðΦðrÞ

AA0 ⊗ ΦðrÞ
BB0 ÞðρAB ⊗ 1A0B0 Þ�; ð2Þ

which is a POVM element by construction. Our main
observation in this section is that nonseparability of the
POVM element defined by Eq. (2) is equivalent to the
underlying state being entangled. Namely, we have

Proposition 1. For any r > 0, the POVM elementMðrÞ
A0B0

defined by Eq. (2) is entangled if and only if ρAB is
entangled.
Proof 1.—Let us assume ρAB is separable, i.e.,

ρAB ¼
X
μ

pμρ
μ
A ⊗ σμB: ð3Þ

We can then define

MðrÞμ
A0 ≔ TrA½ΦðrÞ

AA0 ðρμA ⊗ 1A0 Þ�;
NðrÞμ

B0 ≔ TrB½ΦðrÞ
BB0 ðσμB ⊗ 1B0 Þ�; ð4Þ

which are POVM elements by construction. It is easy to see

that MðrÞ
A0B0 ¼ P

μ pμM
ðrÞμ
A0 ⊗ NðrÞμ

B0 , which is separable. It
remains to be shown that the POVM element defined by
Eq. (2), which can be rewritten as [17]

MðrÞ
A0B0 ¼ ð1 − λ2Þλn̂Aþn̂BρTABλ

n̂Aþn̂B ð5Þ

(where λ ¼ tanh r and n̂X ¼ a†XaX the number operator on
mode X), is entangled for all entangled ρAB. In fact,
suppose there exists an entanglement witness W such that
Tr½ρW� < 0 while Tr½ρ0W� ≥ 0 for any ρ0 separable [18].
From W we can obtain a Hermitian operator W̃ such that

Tr½MðrÞ
A0B0W̃� < 0, whereas for any separable POVM

Tr½Pμ puðMμ
A ⊗ Nμ

BÞW̃� ≥ 0. Consider in fact

W̃ ¼ λ−n̂A−n̂BWTλ−n̂A−n̂B : ð6Þ

It is then easy to see that

Tr½MðrÞ
A0B0W̃� ¼ ð1 − λ2ÞTr½ρW� < 0: ð7Þ

For separable POVMs, on the other hand, it holds

X
μ

pμTr½W̃ðMμ
A ⊗ Nμ

BÞ� ¼
X
μ

pμTr½WðM̃μ
A ⊗ Ñμ

BÞ�; ð8Þ

where M̃μ
A ¼ λn̂AðMμ

AÞTλn̂A , Ñμ
B ¼ λn̂BðNμ

BÞTλn̂B . The oper-
ators M̃μ

A and Ñμ
B are manifestly positive semidefinite,

meaning that under a proper renormalization they can be
seen as states, thus generating a separable state ρ0 such that
Tr½ρ0W� ≥ 0. This implies

X
μ

pμTr½WðM̃μ
A ⊗ M̃μ

BÞ� ≥ 0; ð9Þ

which finishes the proof. ▪
We show in Ref. [16] that the violation of the derived

witness Eq. (7) scales as 1=N, where N is the energy scale
(number of photons) defined by the original witness, which
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is to be compared with the 1=d scaling found in Ref. [9] (d
being the Hilbert space dimension of ρAB).
As a consequence of Proposition 1, Alice and Bob can

certify the entanglement of ρAB in a MDI way, if their
output statistics allow them to fully reconstruct the POVM

elementMðrÞ
A0B0 . As in the case of discrete variables [14], this

can be achieved by means of process tomography [21,22].
The set of all coherent states form a tomographically
complete set via the Glauber-Sudarshan P representation
[23,24]. Further it has been shown that discrete sets of
coherent states can form tomographically complete sets
[25,26]. As a special case of process tomography with
coherent states, POVMs can be fully reconstructed by their
output statistics [27–29]. Once Alice and Bob have

reconstructed MðrÞ
A0B0 , they can determine whether it is

nonseparable using an entanglement criterion. We also
note that, for a given entangled state, if the witness W is

known, all that is necessary is to evaluate Tr½MðrÞ
A0B0W̃�,

which might not require full tomography. In summary, we
have the following:
Corollary 1. For every entangled state ρAB, if jαi and

jβi are chosen from tomographically complete sets, Alice
and Bob can certify the entanglement of ρAB in a meas-
urement-device-independent way.
The results presented in this section suffer from practical

problems in their realization: first, they rely on performing
the POVM that projects on the two-mode squeezed states
defined in Eq. (1). A typical scheme for such measurement
involves photodetection [16], which typically has low
efficiency and high cost. Second, the full tomography
could be in general experimentally inefficient. Therefore,
the previous proof is mostly a proof-of-principle result.
Next, we show that feasible schemes for MDI entanglement
detection are possible. In fact, we propose an experimen-
tally friendly MDI entanglement detection protocol which
is based solely on homodyne measurements and can detect
all two-mode Gaussian entangled states.
MDI entanglement witness for all two-mode Gaussian

states.—In this section we present a practical method for
MDI entanglement certification of Gaussian states that can
be implemented using readily available optical compo-
nents. Our method is inspired by the entanglement witness
(EW) introduced in a seminal paper by Duan et al. [30] (see
also Simon [31]). In that work, it was proven that the
inequality

hEWκi≡ hΔ2ûκi þ hΔ2v̂κi ≥
κ2 þ κ−2

2
; ð10Þ

where hΔ2Ôi is the variance of the operator Ô, and

ûκ ¼
�
κx̂A −

x̂B
κ

�
; v̂κ ¼

�
κp̂A þ p̂B

κ

�
; ð11Þ

(i) holds for any two-mode separable state, real number κ,
where κ > 0 without loss of generality, and pairs of
orthogonal quadratures of the bosonic modes A and B
[32], while (ii) for any entangled Gaussian state there exist
a value of κ and pairs of quadratures such that Eq. (10) is
violated.
Our main result is an experimentally friendly method for

MDI entanglement detection inspired by the witness (10)
and given by the following proposition:
Proposition 2. Let jαi and jβi be coherent states

prepared by Alice and Bob according to the Gaussian
probability distribution

PðαÞ ¼ 1

πσ2
e−jαj2=σ2 α≡ αx þ iαp ð12Þ

(for different choices of input distribution, see Ref. [16]).
Consider the setup in Fig. 1 in which uncharacterized local
measurements are applied jointly on these states and half of
an unknown state ρAB, producing as a result two real
numbers ða1; a2Þ for Alice and ðb1; b2Þ for Bob. For all
local measurements and all separable states one has

hMDIEWκi≡ hU2
κi þ hV2

κi ≥
κ2 þ κ−2

2

σ2

1þ σ2
; ð13Þ

where Uκ and Vκ are

Uκ ≡ κa1 −
b1
κ
−
καx −

βx
κffiffiffi

2
p ;

Vκ ≡ κa2 þ
b2
κ
−
καp þ βp

κffiffiffi
2

p : ð14Þ

FIG. 1. Experimental setup for the MDI entanglement detection
of a two-mode state. Fiduciary coherent states are prepared by the
parties and measured together with the corresponding subsystems
of the unknown state ρAB. To compute the bound of the
entanglement witness (13), measurements should be seen as
uncharacterized black boxes producing the outputs. To obtain a
violation, the following specific measurements are implemented:
the coherent states are mixed with the respective modes of ρAB in
a 50∶50 beam splitter and homodyne measurements of x̂ and p̂
are performed on the two outputs.
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For any two-mode entangled Gaussian state, there exist
local measurements acting jointly on the state and the input
coherent states violating inequality (13).
Looking at its definition, the operational meaning of

the witness is clear: Alice and Bob results should be
such that their difference and sum, weighted by κ, are as
close as possible to the same difference and sum of the
quadratures of the coherent states, divided by

ffiffiffi
2

p
. Note

also that expectation values in (13) are computed with
respect to the quantum state and the distribution of
coherent states.
Proof of (13).—To prove the inequality we need to

minimize the value of the witness over all separable states

ρAB ¼ P
i piρ

ðiÞ
A ⊗ ρðiÞB . We can restrict the analysis to

product states because the witness is linear on the state.
It follows that the output probability factorizes

pða1; a2; b1; b2jα; βÞ ¼ Tr½MA
a1;a2 jαihαj�Tr½MB

b1;b2
jβihβj�;

ð15Þ

and we are left with two independent POVMs on the
input states to be optimized. Using hU2

κi þ hV2
κi ≥

hΔ2Uκi þ hΔ2Vκi and the fact that the distribution is
completely factorized between the two sides it follows
that the value of the witness is lower bounded by the
minimum of

1

2

�
κ2 þ 1

κ2

�
ðhΔ2½

ffiffiffi
2

p
a1 − αx�i þ hΔ2½

ffiffiffi
2

p
a2 − αp�iÞ: ð16Þ

That is, in the absence of correlations, the best Alice and
Bob can do is to separately perform the optimal measure-
ments to estimate the input coherent states.
Minimizing the expression in the second parenthesis in

(16) looks essentially like a metrology problem. A lower
bound, in turn, can be obtained using a multiparameter
Bayesian version of the quantum Cramér-Rao bound [34].
The simultaneous estimation of the position and momen-
tum quadratures has been studied thoroughly and is
optimized for coherent states by measuring x̂ and p̂ on
two different modes after a 50∶50 beam splitter [35,36]. In
particular, assuming a Gaussian prior distribution, like in
our case, the minimal sum of variances is equal to σ2=ð1þ
σ2Þ [35], which proves the bound for the entanglement
witness. ▪
To prove the violation claimed in Proposition 2, it

suffices to show that for any entangled two-mode
Gaussian state there exist local measurements and values
of ðκ; σÞ that lead to it. Consider now the optical setup
depicted in Fig. 1. Alice and Bob, upon receiving their
respective subsystems of ρAB, first mix them with local
coherent states in a balanced beam splitter, and then
measure the position and momentum quadratures in the
output ports. The output observables are thus

Â1 ¼
x̂α þ x̂Affiffiffi

2
p ; Â2 ¼

p̂α − p̂Affiffiffi
2

p ;

B̂1 ¼
x̂β þ x̂Bffiffiffi

2
p ; B̂2 ¼

p̂β − p̂Bffiffiffi
2

p : ð17Þ

The quadratures x̂A, p̂A, x̂B, and p̂B are those used in
the standard witness (10). Observables (17) are used to
define the measurement outputs needed for the computa-
tion of our MDI witness (13). More precisely, consider first
the case in which the average values of the state’s quad-
ratures are null, hx̂Ai ¼ hp̂Ai ¼ hx̂Bi ¼ hp̂Bi ¼ 0. Then, by
taking ða1; a2; b1; b2Þ equal to the statistical output of
ðÂ1; Â2; B̂1; B̂2Þ, respectively, it follows by substituting
in (15) [37]

hU2
κi ¼

��
κ
x̂α þ x̂Affiffiffi

2
p −

1

κ

x̂β þ x̂Bffiffiffi
2

p −
καx −

βx
κffiffiffi

2
p

�2�

¼ 1

2

�
κ2hΔ2x̂αi þ

hΔ2x̂βi
κ2

þ hΔ2ûκi
�

¼ 1

2

�
κ2 þ κ−2

4
þ hΔ2ûκi

�
: ð18Þ

Similarly, hV2
κi ¼ 1

2
f½ðκ2 þ κ−2Þ=4� þ hΔ2v̂κig, and conse-

quently we find that in the proposed scheme

hMDIEWκi ¼
1

2

�
κ2 þ κ−2

2
þ hEWκi

�
: ð19Þ

The generalization to states that have nonzero averages of
the quadratures is obtained by simply offsetting the outputs
accordingly as follows: a1 is the output of Â1 − hx̂Ai=

ffiffiffi
2

p
,

a2 of Â2 þ hp̂Ai=
ffiffiffi
2

p
and so on.

The violation of the inequality (13) is therefore found for
any entangled Gaussian state: indeed, for any such state
there exist quadratures and a value of κ such that
hEWκi < ½ðκ2 þ κ−2Þ=2�, which implies from Eq. (19) that
in the proposed scheme hMDIEWκi < ½ðκ2 þ κ−2Þ=2�. It is
then sufficient to choose σ large enough to violate (13).
Two-mode squeezed state case, with noise tolerance.—

At last, to illustrate the feasibility of our scheme, we apply
it to the case of ρAB being a TMSV state. By including noise
tolerance, we pave the way for an experimental realization
of our MDI entanglement witness.
A TMSV state can be described as the mixing of two

single-mode squeezed states (one squeezed in p̂ and one in
x̂) [33]. In the Heisenberg picture, this results in

x̂A ¼ erx̂ð0Þ1 þ e−rx̂ð0Þ2ffiffiffi
2

p ; p̂A ¼ e−rp̂ð0Þ
1 þ erp̂ð0Þ

2ffiffiffi
2

p ;

x̂B ¼ erx̂ð0Þ1 − e−rx̂ð0Þ2ffiffiffi
2

p ; p̂B ¼ e−rp̂ð0Þ
1 − erp̂ð0Þ

2ffiffiffi
2

p ; ð20Þ
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where the superscript fx̂ð0Þ; p̂ð0Þg represents operators
acting on the vacuum. Consider now the two operators
ûκ¼1 ¼ x̂A − x̂B and v̂κ¼1 ¼ p̂A þ p̂B. From Eq. (10) we
see, by choosing κ ¼ 1, that these operators satisfy for
any separable state hΔ2ûκ¼1i þ hΔ2v̂κ¼1i ≥ 1. If we com-
pute the above combination for the two-mode squeezed

state, we obtain ûκ¼1 ¼
ffiffiffi
2

p
e−rx̂ð0Þ2 and v̂κ¼1 ¼

ffiffiffi
2

p
e−rp̂ð0Þ

1 .
Consequently, it holds

hEWk¼1iTMSV ¼ e−2r < 1: ð21Þ

This is not surprising: as soon as there is squeezing r > 0
the state is entangled. Substituting this value into expres-
sion (13), we obtain the entangled score for the MDI
witness hMDIEWκ¼1i ¼ 1

2
ð1þ e−2rÞ.

To check the noise tolerance, we consider losses in the
modes A and B modeled as a beam splitter

âAðηAÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηA

p
âAð0Þ þ

ffiffiffiffiffi
ηA

p
âð0ÞNA;

âBðηBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηB

p
âBð0Þ þ

ffiffiffiffiffi
ηB

p
âð0ÞNB; ð22Þ

where âð0ÞNX is a vacuum mode acting as a noise on mode X,
while âXð0Þ is the corresponding noiseless mode. We focus
on a natural scenario in which the source producing the
two-mode squeezed state is between Alice and Bob and
losses affect the two modes, not necessarily in a symmetric
way. At the same time, the same loss noise [Eq. (22)]
applied to the input coherent states would lead only to a
renormalization of α and β and can be compensated by
increasing the variance σ. Using Eqs. (20) and (22) we can
accordingly compute

hEWκiTMSV;ηA;ηB ¼
�
Δ2

�
κx̂AðηAÞ −

x̂BðηBÞ
κ

�
þ Δ2

�
κp̂AðηAÞ þ

p̂BðηBÞ
κ

��

¼ 1

2

�
κ2ηA þ ηB

κ2

�
þ e2r

4

�
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηA

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηB

p
κ

�
2

þ e−2r

4

�
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηA

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηB

p
κ

�
2

: ð23Þ

Notice that it is always possible to choose κ such that
κ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηA

p
− κ−1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ηB

p ¼ 0 and r big enough to nullify
the last term of Eq. (23), and obtain a score (19)

hMDIEWκi ¼ 1
4
ðκ2ðη2A þ 1Þ þ ðη2B þ 1Þκ−2Þ, which is

lower than the separable bound 1
2
ðκ2 þ κ−2Þ½σ2=ð1þ σ2Þ�

for large enough σ. In this sense the entanglement witness
we analyzed here is loss resistant. In Fig. 2 we plot the
trade-off between noise, entanglement, and variance of the
prior distributions σ for the MDI detection of entanglement
in the case of symmetric losses (ηA ¼ ηB, κ ¼ 1).
Discussion.—In this work we have promoted the task

of measurement-device-independent entanglement certifi-
cation to the continuous-variable regime. We first gener-
alized the results of Refs. [8,9] and proved that all
continuous-variable entangled states can in principle be
detected in this scenario. Then, we showed a simple MDI
test able to detect the entanglement of all two-mode
Gaussian entangled states. Most importantly, the test only
relies on the preparation of coherent states and uses
standard experimental setups, thus being readily available
with current technology.
Our work also opens up a series of interesting directions.

From a general perspective, our works opens the path to the
use of CV quantum systems for MDI tasks beyond
entanglement detection, such as randomness generation
or secure communication. Another possible research direc-
tion would be to investigate the possible generality of the
connection between entanglement detection and metrology
exploited here. In particular, can all MDI entanglement
tests be translated into a parameter estimation problem? We
are therefore confident that our results will motivate further
studies in the field of quantum information with continuous
variables.

FIG. 2. Contour plot of the obtainable value (19) of
hMDIEWκ¼1i, for a two-mode squeezed vacuum state with
squeezing parameter r, under the presence of losses with
parameter ηA ¼ ηB ≡ η [cf. (23)]. The contours are chosen to
match the separable bound (13) for different values of σ, which
corresponds to the width of the Gaussian prior used in the
experiment. Therefore the area under each σ contour defines the
range of parameters for which MDI entanglement is certified.

PHYSICAL REVIEW LETTERS 126, 190502 (2021)

190502-5



We thank Roope Uola for insightful discussions. This
work was supported by the Government of Spain
(FIS2020-TRANQI and Severo Ochoa CEX2019-
000910-S), Fundació Cellex, Fundació Mir-Puig,
Generalitat de Catalunya (CERCA, AGAUR SGR 1381
and QuantumCAT). A. A. is supported by the ERC AdG
CERQUTE and the AXA Chair in Quantum Information
Science. P. A. is supported by “la Caixa” Foundation
(ID 100010434, fellowship code LCF/BQ/DI19/
11730023). S. B. acknowledges funding from the
European Union’s Horizon 2020 research and innovation
program, Grant Agreement No. 820466 (project CiViQ).
D. C. is supported by a Ramon y Cajal Fellowship (Spain).

*paolo.abiuso@icfo.eu
[1] A. K. Ekert, Quantum Cryptography Based on Bell’s

Theorem, Phys. Rev. Lett. 67, 661 (1991).
[2] R. Jozsa and N. Linden, On the role of entanglement in

quantum-computational speed-up, Proc. R. Soc. A 459,
2011 (2003).

[3] G. Tóth and I. Apellaniz, Quantum metrology from a
quantum information science perspective, J. Phys. A 47,
424006 (2014).

[4] O. Ghne and G. Tth, Entanglement detection, Phys. Rep.
474, 1 (2009).

[5] D. Rosset, R. Ferretti-Schöbitz, J.-D. Bancal, N. Gisin, and
Y.-C. Liang, Imperfect measurement settings: Implications
for quantum state tomography and entanglement witnesses,
Phys. Rev. A 86, 062325 (2012).

[6] T. Moroder, O. Gühne, N. Beaudry, M. Piani, and N.
Lütkenhaus, Entanglement verification with realistic meas-
urement devices via squashing operations, Phys. Rev. A 81,
052342 (2010).

[7] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and
S. Wehner, Bell nonlocality, Rev. Mod. Phys. 86, 419
(2014).

[8] F. Buscemi, All Entangled Quantum States are Nonlocal,
Phys. Rev. Lett. 108, 200401 (2012).

[9] C. Branciard, D. Rosset, Y.-C. Liang, and N. Gisin,
Measurement-Device-Independent Entanglement Witnesses
for all Entangled Quantum States, Phys. Rev. Lett. 110,
060405 (2013).

[10] H.-K. Lo, M. Curty, and B. Qi, Measurement-Device-
Independent Quantum Key Distribution, Phys. Rev. Lett.
108, 130503 (2012).

[11] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook,
S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen,
and U. L. Andersen, High-rate measurement-device-
independent quantum cryptography, Nat. Photonics 9,
397 (2015).

[12] Z. Li, Y.-C. Zhang, F. Xu, X. Peng, and H. Guo, Continuous-
variable measurement-device-independent quantum key dis-
tribution, Phys. Rev. A 89, 052301 (2014).

[13] X.-C. Ma, S.-H. Sun, M.-S. Jiang, M. Gui, and L.-M. Liang,
Gaussian-modulated coherent-state measurement-device-
independent quantum key distribution, Phys. Rev. A 89,
042335 (2014).

[14] I. Šupić, P. Skrzypczyk, and D. Cavalcanti, Measurement-
device-independent entanglement and randomness estima-
tion in quantum networks, Phys. Rev. A 95, 042340 (2017).

[15] D. Rosset, A. Martin, E. Verbanis, Charles Ci Wen Lim, and
R. Thew, Practical measurement-device-independent entan-
glement quantification, Phys. Rev. A 98, 052332 (2018).

[16] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.126.190502 for techni-
cal details and generalizations of the results in the main text.

[17] Here we used the well-known decomposition of two-mode
squeezed states in the Fock basis

jΦðrÞi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tanh2 r

p X∞
i¼0

ðtanh rÞijiii:

[18] Such a witness always exists, as the set of separable states is
defined to be closed for operational consistence, see, e.g.,
Refs. [19,20].

[19] B. Regula, L. Lami, G. Ferrari, and R. Takagi, Operational
Quantification of Continuous-Variable Quantum Resources,
Phys. Rev. Lett. 126, 110403 (2021).

[20] A. S. Holevo, Probabilistic and Statistical Aspects of
Quantum Theory, Vol. 1 (Springer Science & Business
Media, Basel, 2011).

[21] M. Lobino, D. Korystov, C. Kupchak, E. Figueroa, B. C.
Sanders, and A. Lvovsky, Complete characterization of
quantum-optical processes, Science 322, 563 (2008).

[22] G. M. D’Ariano, L. Maccone, and M. G. Paris, Quorum of
observables for universal quantum estimation, J. Phys. A 34,
93 (2001).

[23] E. Sudarshan, Equivalence of Semiclassical and Quantum
Mechanical Descriptions of Statistical Light Beams, Phys.
Rev. Lett. 10, 277 (1963).

[24] R. J. Glauber, Coherent and incoherent states of the radi-
ation field, Phys. Rev. 131, 2766 (1963).

[25] J. Janszky and A. V. Vinogradov, Squeezing Via One-
Dimensional Distribution of Coherent States, Phys. Rev.
Lett. 64, 2771 (1990).

[26] J. Janszky, P. Domokos, S. Szabó, and P. Adám, Quantum-
state engineering via discrete coherent-state superpositions,
Phys. Rev. A 51, 4191 (1995).

[27] J. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. Pregnell,
C. Silberhorn, T. Ralph, J. Eisert, M. Plenio, and I.
Walmsley, Tomography of quantum detectors, Nat. Phys.
5, 27 (2009).

[28] L. Zhang, H. B. Coldenstrodt-Ronge, A. Datta, G. Puentes,
J. S. Lundeen, X.-M. Jin, B. J. Smith, M. B. Plenio, and I. A.
Walmsley, Mapping coherence in measurement via full
quantum tomography of a hybrid optical detector, Nat.
Photonics 6, 364 (2012).

[29] S. Grandi, A. Zavatta, M. Bellini, and M. G. Paris, Exper-
imental quantum tomography of a homodyne detector, New
J. Phys. 19, 053015 (2017).

[30] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Insepa-
rability Criterion for Continuous Variable Systems, Phys.
Rev. Lett. 84, 2722 (2000).

[31] R. Simon, Peres-Horodecki Separability Criterion for Con-
tinuous Variable Systems, Phys. Rev. Lett. 84, 2726 (2000).

[32] We use here a notation similar to Ref. [33]. In particular the
quadratures are defined as

PHYSICAL REVIEW LETTERS 126, 190502 (2021)

190502-6

https://doi.org/10.1103/PhysRevLett.67.661
https://doi.org/10.1098/rspa.2002.1097
https://doi.org/10.1098/rspa.2002.1097
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1016/j.physrep.2009.02.004
https://doi.org/10.1103/PhysRevA.86.062325
https://doi.org/10.1103/PhysRevA.81.052342
https://doi.org/10.1103/PhysRevA.81.052342
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/RevModPhys.86.419
https://doi.org/10.1103/PhysRevLett.108.200401
https://doi.org/10.1103/PhysRevLett.110.060405
https://doi.org/10.1103/PhysRevLett.110.060405
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1103/PhysRevLett.108.130503
https://doi.org/10.1038/nphoton.2015.83
https://doi.org/10.1038/nphoton.2015.83
https://doi.org/10.1103/PhysRevA.89.052301
https://doi.org/10.1103/PhysRevA.89.042335
https://doi.org/10.1103/PhysRevA.89.042335
https://doi.org/10.1103/PhysRevA.95.042340
https://doi.org/10.1103/PhysRevA.98.052332
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.190502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.190502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.190502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.190502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.190502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.190502
http://link.aps.org/supplemental/10.1103/PhysRevLett.126.190502
https://doi.org/10.1103/PhysRevLett.126.110403
https://doi.org/10.1126/science.1162086
https://doi.org/10.1088/0305-4470/34/1/307
https://doi.org/10.1088/0305-4470/34/1/307
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRevLett.10.277
https://doi.org/10.1103/PhysRev.131.2766
https://doi.org/10.1103/PhysRevLett.64.2771
https://doi.org/10.1103/PhysRevLett.64.2771
https://doi.org/10.1103/PhysRevA.51.4191
https://doi.org/10.1038/nphys1133
https://doi.org/10.1038/nphys1133
https://doi.org/10.1038/nphoton.2012.107
https://doi.org/10.1038/nphoton.2012.107
https://doi.org/10.1088/1367-2630/aa6f2c
https://doi.org/10.1088/1367-2630/aa6f2c
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2722
https://doi.org/10.1103/PhysRevLett.84.2726
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2
:

Note for example that the variances of the quadratures will
have a factor 1=2 with respect to the normalization choice of
Ref. [30].

[33] S. Braunstein and P. van Loock, Quantum information with
continuous variables, Rev. Mod. Phys. 77, 513 (2005).

[34] H. Yuen and M. Lax, Multiple-parameter quantum estima-
tion and measurement of nonselfadjoint observables, IEEE
Trans. Inf. Theory 19, 740 (1973).

[35] M. G. Genoni, M. G. A. Paris, G. Adesso, H. Nha, P. L.
Knight, and M. S. Kim, Optimal estimation of joint param-
eters in phase space, Phys. Rev. A 87, 012107 (2013).

[36] S. Morelli, A. Usui, E. Agudelo, and N. Friis, Bayesian
parameter estimation using gaussian states and measure-
ments, Quantum Sci. Technol. 6, 025018 (2021).

[37] We use that coherent states have minimum variances
hΔ2x̂α;βi ¼ hΔ2p̂α;βi ¼ 1

4
.

PHYSICAL REVIEW LETTERS 126, 190502 (2021)

190502-7

https://doi.org/10.1103/RevModPhys.77.513
https://doi.org/10.1109/TIT.1973.1055103
https://doi.org/10.1109/TIT.1973.1055103
https://doi.org/10.1103/PhysRevA.87.012107
https://doi.org/10.1088/2058-9565/abd83d

