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In superconducting circuits interrupted by Josephson junctions, the dependence of the energy spectrum
on offset charges on different islands is 2e periodic through the Aharonov-Casher effect and resembles a
crystal band structure that reflects the symmetries of the Josephson potential. We show that higher-
harmonic Josephson elements described by a cosð2φÞ energy-phase relation provide an increased freedom
to tailor the shape of the Josephson potential and design spectra featuring multiplets of flat bands and Dirac
points in the charge Brillouin zone. Flat bands provide noise-insensitive energy levels, and consequently,
engineering band pairs with flat spectral gaps can help improve the coherence of the system. We discuss a
modified version of a flux qubit that achieves, in principle, no decoherence from charge noise and introduce
a flux qutrit that shows a spin-1 Dirac spectrum and is simultaneously quite robust to both charge and flux
noise.
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Introduction.—Superconducting circuits are among
the best candidates for quantum computation applications
[1–3] and represent an ideal platform for the study and the
implementation of artificial quantum matter [4,5]. Among
the several varieties, the superconducting flux qubit (FQ)
[6] represents one of the early prototypes [7–9] and has
recently received renewed interest [10–12]. Its two funda-
mental current-carrying states correspond to the minima of
the circuit Josephson potential, and quantum tunneling
(phase slip) generates coherent superpositions. Because of
the Aharonov-Casher effect [13,14], the spectrum of the
qubit acquires a dependence on gate-controlled offset
charges localized on the islands between the junctions
[15–20]. The charge degeneracy of the condensate confers
a 2e periodicity to the spectrum, which resembles a
crystal band structure [6,21–23]. In a small loop hosting
n-independent superconducting islands, the spectrum in the
n-dimensional charge Brillouin zone (BZ) can potentially
host Dirac and Weyl points [23] or flat bands, thus
simulating quantum materials. An analogous and dual
approach has been recently put forward, where the
Andreev spectrum of a multiterminal Josephson junction
can host Weyl points and can be seen as a kind of
topological matter [24,25].
Typically the dependence on the offset charges is

minimized, as one of the main sources of decoherence
in superconducting qubits is represented by charge noise
[6,26–28]. This is the case of the transmon qubit design
[29–31], where a large capacitance shunts a small super-
conducting island, resulting in band flattening as a function
of the offset charges, at the price of weakly anharmonic
spectra. The same idea has been employed in the later

versions of the flux qubit, where a shunt capacitance
reduces charge sensitivity [10–12]. On the other hand,
drawing from the analogy with crystal band structures,
flattening of the bands can result from destructive inter-
ference. This is the case in the flat bands of twisted bilayer
graphene [32–34], which have recently attracted enormous
interest, or the quantum Hall effect, where long-wavelength
destructive interference quenches the kinetic energy. A
short-wavelength counterpart is represented by lattice
models, such as the Lieb or the kagome lattice, where
an atomic redundancy at the unit cell level typically
produces flat bands. Spectra featuring multiplets of flat
bands provide noise-insensitive quantum states, without
paying the price of weak anharmonicity.
In this Letter, we employ second-harmonic Josephson

junctions (JJs) described by a cosð2φÞ energy-phase
relation to modulate the Josephson potential at short
wavelengths and tailor the details of a structured unit cell.
A variety of Josephson energy-phase relations have been
discussed in the literature. A relevant example is provided
by the 4π Josephson effect in topological superconductors
[35], where a cosðφ=2Þ relation describes single electron
tunneling via Majorana zero energy states localized at the
junction. Likewise, second-harmonic Josephson energy-
phase relations describe tunneling of pairs of Cooper pairs
at the junction and several instances have been recently
proposed [36,37]. An effective cosð2φÞ is realized in
parity-protected semiconductor-superconductor qubits
[38] through gatemons [39,40], based on semiconducting
wires [41,42], or can be obtained by using four nominally
equal JJs in a rhombus configuration [43–47]. In turn, the
recently introduced bifluxon qubit [48], defined by the
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parity of the flux quanta, is based on an effective cosðφ=2Þ
energy-phase relation. These elements, and other instances
featuring more general energy-phase relations, provide
us with augmented freedom to engineer the Josephson
potential and increase the coherence of the system.
The main results of this Letter are a charge-noise-

insensitive flux qubit and a robust flux qutrit featuring a
spin-1 Dirac spectrum. The former displays multiplets of
levels that hardly depend on the offset charges, thus
rendering the device basically insensitive to charge noise.
The flux qutrit realizes a three-band model mimicking a
Lieb lattice, which features a single Dirac cone and an
almost flat band in the charge BZ. Despite the increased
sensitivity to offset charges, this device shows a good
degree of robustness to charge noise and, perhaps more
interestingly, an increased insensitivity to flux noise com-
pared to conventional flux qubits.
Charge-noise-insensitive FQ.—The circuit realizing a

FQ is composed by a loop interrupted by three JJs and
threaded by a flux Φx ¼ Φ0φx=2π, with Φ0 ¼ h=2e the
flux quantum [6]. The low-energy states jLi and jRi carry
opposite circulating current and correspond to the two
minima of the Josephson potential that are degenerate when
φx ¼ π, as shown in Fig. 1(b). Quantum tunneling gen-
erates a matrix element Δ ¼ hLjHjRi. A tunneling event
accompanied by a 2π phase slip acquires a phase factor that
depends on the offset charges via the Aharonov-Casher
effect. In an extended picture of the Josephson potential,
the low-energy Hamiltonian can be constructed via a tight-
binding approach, where the role of the momentum is
played by the offset charges q1 ¼ Q1=2e and q2 ¼ Q2=2e.

This way, after recognizing a deformed honeycomb lattice
structure, the off-diagonal matrix element is written as
Δq ¼ −Δ0 − t1ðe2πiq1 þ e2πiq2Þ, in terms of intra- and
intercell hoppings Δ0 and t1, respectively. The FQ
Hamiltonian then reads

H ¼ ϵðφxÞσz − Δqσ
þ − Δ�

qσ
−: ð1Þ

Here, ϵðφxÞ ∝ φx − π is an energy imbalance between the
two current-carrying states occurring when the flux
deviates from Φ0=2, and σi are Pauli matrices spanning
the fjLi; jRig basis. A two-dimensional Dirac spectrum,
gapped by ϵðφxÞ, emerges for t1 > Δ0 [6,21–23].
Typically, in order to increase robustness to charge noise,

the potential barrier between different cells is increased by
reducing the area of one Josephson junction. We now show
that we can suppress the tunneling in another way. If we
replace all JJs with π-periodic JJs, the Josephson potential
simply becomes π periodic. Two branches of 4e-periodic
spectra will appear, one for even and one for odd number of
Cooper pairs, shifted by 2e. If we now shunt the two
nominally equal π-periodic JJs with ordinary 2π-periodic
JJs with smaller energy, we create a weak modulation of the
potential on the scale of the 2π periodicity. As a result of the
modulation, the 2π periodicity of the potential is recovered
and, accordingly, the 2e periodicity of the charge BZ.
The full circuit is schematically depicted in Fig. 1(a).

π-periodic JJs are indicated with two red lines. The main
loop is composed of three π-periodic JJs, two equal with
Josephson energy E4e and the third one with Josephson
energy E0

4e ¼ αE4e. The gauge-invariant phase differences
in the main loop can be chosen as φ1, φ2, and φx − φ1 − φ2.
In addition, the two equal π-periodic JJs are shunted
by ordinary 2π-periodic JJs, with Josephson energy
E2e ¼ βE4e, and no flux threads the loop, φ0 ¼ 0. For
β < 1, they generate a weak modulation of the Josephson
potential, whose full form reads

VðφÞ ¼ −
X
i¼1;2

½E2e cosðφiÞ þ E4e cosð2φiÞ�

− E0
4e cos½2ðφx − φ1 − φ2Þ�: ð2Þ

Including the charging energy, the full Hamiltonian reads

H ¼ 4ECð−i∇φ þ qÞTC−1ð−i∇φ þ qÞ þ VðφÞ; ð3Þ

with qi ¼ CgVi=2e offset charges controlled by the
gate potential Vi via capacitance Cg, EC ¼ e2=2C,
C ¼ CJ þ Cg, CJ and C0

J are the capacitances of the JJs,
and the symmetric capacitance matrix is specified by
Cii ¼ 1þ c, C12 ¼ c, with c ¼ C0

J=C.
The Josephson potential is shown in Fig. 1(c) for the

choice φx ¼ π=2, α ¼ 0.8, and β ¼ 0.2: it features two
global minima at the center of the unit cell and local
minima, corresponding to π shifted replica, higher in

(a) (d)

(b) (c)

FIG. 1. (a) Schematics of a charge-noise-insensitive flux qubit
employing cosð2φÞ JJs, indicated as two parallel red lines.
(b) Josephson potential of an ordinary FQ for φx ¼ π and
(c) Josephson potential Eq. (2) for the choice α ¼ 0.8,
β ¼ 0.2, and φx ¼ π=2. In (b) and (c) the unit cell is highlighted
in white. (d) Exact spectrum showing the six lowest energy levels
as a function of the two offset charges q1 and q2.
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energy as an effect of the 2π modulation. The lowest energy
current-carrying states are given by the two global minima.
Tunneling to the next unit cell necessarily has to take place
via virtual processes through local minima. Denoting byΔ0

and δ1 the intracell tunneling matrix element between
global and local minima, respectively, and t1 the intercell
tunneling matrix elements, with t1 < δ1 < Δ0, at second-
order perturbation theory we have

Δq ¼ Δ0 þ
δ1t21

δE2 − δ21
ðe2πiq1 þ e2πiq2Þ; ð4Þ

with δE as the energy difference between global and local
minima. Clearly, δE dominates over Δ0, as the former is on
order of E2e, whereas the latter is due to a tunneling
process. In the limit δ1; t1 ≪ Δ0 ≪ δE the dependence on
the offset charges becomes highly suppressed, thus dem-
onstrating the effectiveness of potential engineering. The
qubit Hamiltonian is again given by Eq. (1), where now an
energy imbalance is set by ϵðφxÞ ∝ φx − π=2.
The predictions of the low-energy tight-binding model

are checked by diagonalization of the Hamiltonian (3) in
the charge basis and the six lowest energy bands are shown
in Fig. 1(d). The spectrum has been calculated for c ¼ 1.9,
α ¼ 0.8, β ¼ 0.5, and EC=E4e ¼ 0.055. On the scale of the
full 2e charge BZ, the lowest three bands are basically flat.
The wave functions of the two lowest energy levels are
given by the symmetric and antisymmetric superposition of
current-carrying states (not shown).
We now fully address the coherence of the device with

respect to charge and flux fluctuations. Following a
standard approach [26–28], the dependence of the
Hamiltonian on external parameters λi is expanded at first
order, so that Hq-env ¼

P
i δλiðtÞOi, with Oi ¼ ∂H=∂λi.

This way, charge fluctuations couple to the charge operator
Qi ¼ ð4EC=eÞC−1ij ð−i∂j þ qjÞ and flux fluctuations couple
to the current operator I ¼ ð2π=Φ0Þ∂V=∂φx. The relaxa-
tion time sets the timescale for decay of the excited state j1i
to the ground state j0i, and by the Fermi golden rule it is
given by T−1

1 ¼ P
i jh0jOij1ij2Siðω01Þ, with Si the power

spectrum of the fluctuating variable λi and ω01 ¼ E1 − E0

the qubit transition frequency [26–28]. In turn, pure
dephasing describes the loss of coherence of superpositions
of eigenstates and is therefore sensitive to fluctuations
in ω01. Pure dephasing time is estimated as T−1

ϕ ¼P
i jh1jOij1i − h0jOij0ij2Sið0Þ [28,49,50]. Given the form

of the relaxation and dephasing rate, two strategies are
typically employed to reduce them: either reduce the
coupling to the environment, or reduce the fluctuations
in the environment. Here we follow the first route and
assess the matrix elements of the charge and current
operators in the qubit basis.
Pure dephasing can be assessed by directly looking at the

dependence of the qubit frequency ω01 on charge and flux.
In Fig. 2(a) we plot ω01 as a function of the normalized

charges on the entire charge BZ. At qi ¼ 0; 1=2
the derivative of ω01 is exactly zero and the
dephasing time is formally divergent. Such a point is
usually termed a sweet spot. More interesting is the
bandwidth of energy variation in Fig. 2(a), from which
it follows that 4δ1t21=ðΔ0ðδE2 − δ21ÞÞ ≃ 10−5. This way,
T−1
1 ∝ 10−10Δ2

0SqðΔ0Þ and T−1
ϕ < 10−5Δ0. We can then

conclude that the dephasing time due to charge fluctuations
is on order of hundreds of microseconds in the worst cases.
This result shows that the coherence of the device can be
greatly enhanced through proper design of the Josephson
potential. At the same time, flux qubits are very susceptible
to flux noise due to the intrinsic dependence of the
Josephson potential on the external flux. The latter controls
the value of the circulating current and couples directly to
one qubit axis in Eq. (1). It immediately follows that the
relaxation rate T−1

1 has a maximum at φx ¼ π=2, for which
ϵðφxÞ ¼ 0 and the perturbation is purely off diagonal.
Nevertheless, the point φx ¼ π=2 represents a sweet spot
of formally infinite pure dephasing time Tϕ and qubit
operations can be performed at twice the qubit frequency
[51,52]. The exact matrix elements Mϕ ¼ ðΦ0=2πÞ2jI00 −
I11j2 and M1 ¼ ðΦ0=2πÞ2jI01j2 determining the dephasing
and relaxation rates are shown in Fig. 2(b), together with
the circuit spectrum, versus the applied flux. Away from the
sweet spot, dephasing due to flux noise can severely affect
the device performances. An improvement can be obtained
by shunting the third junction with a large capacitance, so
to increase the effective mass and reduce the associated
tunneling matrix element [10].
Flux qutrit.—We now explain how band engineering

can be exploited to design a qutrit system that can retain a
high degree of robustness to charge noise, as in the above
circuit, while having a reduced sensitivity to flux noise.
We consider the system shown in Fig. 3(a). It is similar
to that shown in Fig. 1(a), with the difference that the
third π-periodic JJ is replaced by an ordinary JJ with
Josephson energy E0

2e, and we set φ0 ¼ 0. The
Hamiltonian has the form of Eq. (3), with the Josephson
potential given by

(a) (b)

FIG. 2. (a) Energy difference ω01 between the two qubit states
as a function of the normalized offset charges. (b) Full spectrum
highlighting the two lowest energy levels as a function of the
applied flux δφx ¼ φx − π=2 and matrix elements Mϕ and M1

determining the relaxation and pure decoherence rates.
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VðφÞ ¼ −
X
i¼1;2

½E2e cosðφiÞ þ E4e cosð2φiÞ�

− E0
2e cosðφx − φ1 − φ2Þ: ð5Þ

For the choice φx ¼ π, the Josephson potential has four
minima, a global one at φ ¼ 0, two local ones at φ ¼
ðπ; 0Þ and φ ¼ ð0; πÞ, and a local one higher in energy at
φ ¼ ðπ; πÞ, as shown in Fig. 3(b). We neglect the high-
energy minimum and focus on a low-energy analysis in
terms of three minima. Their relative energy can be tuned
by varying β ¼ E2e=E4e and γ ¼ E0

2e=E4e, and for γ ¼ β
the three minima are degenerate. In order to be good
fundamental states, their energy difference must be
smaller than the plasma frequency ωP ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ECE4e
p

. This
requires the 4e Josephson elements to be dominant, with
β, γ < 1. Small values of γ ensure that only three
fundamental minima determine the low-energy physics.
On the other hand, too small values of β call into play the
fourth minimum, which would trivialize the analysis.
The three minima define a flux qutrit and form a Lieb

lattice in an extended picture of the potential. It is
instructive to construct a minimal tight-binding model to
describe the low-energy bands. The potential Eq. (5)
breaks “mirror” symmetry, Vð−φ1;φ2Þ ≠ Vðφ1;φ2Þ and
Vðφ1;−φ2Þ ≠ Vðφ1;φ2Þ, so that two fundamental hop-
pings t0 and t1 can be introduced. A third hopping t2 has to
be introduced in order to account for tunneling through the
barrier between two degenerate minima. The effective
Hamiltonian reads

Hq ¼

0
BB@

0 Tðq1Þ T̃q

T�ðq1Þ −ϵðφxÞ T�ðq2Þ
T̃�
q Tðq2Þ 0

1
CCA; ð6Þ

with TðqÞ ¼ −t0 − t1e−2πiq and T̃q ¼ −t2ð1þ e2πiðq1−q2ÞÞ.
For t0 ¼ t1 and ϵ ¼ t2 ¼ 0, the spectrum realizes a well-
known spin-1 Dirac Hamiltonian, with three degenerate
states at q1 ¼ q2 ¼ 1=2, a flat band, and a Dirac cone at the
center of the charge BZ. Both ϵ ≠ 0 and t0 ≠ t1 open a
finite gap in the spectrum. For t2 ¼ 0, the model always
contains a flat band given by the state

u0q ¼

0
B@

t0 þ t1e2πiq2

0

−t0 − t1e2πiq1

1
CA: ð7Þ

For t2 ≠ 0, the flat band acquires a weak dispersion, and
two symmetry-protected Dirac points develop at its cross-
ing with one of the other two bands. The parameters t0, t1,
and t2 depend on the potential barriers and the effective
capacitances of the circuit. Fine-tuning is possible through
flux-dependent Josephson junctions. We numerically
diagonalize the Hamiltonian in the charge basis, and the
low-energy spectrum is shown in Fig. 3(c) for β ¼ 0.3,
γ ¼ 0.352, and EC=E2e ¼ 0.1. An approximate spin-1
Dirac spectrum is obtained, with a dispersive Dirac cone
and an almost flat band, with deviations due to finite
hopping t2 between degenerate minima.
The flux qutrit so far defined shows interesting coher-

ence properties. Analogously to the case of a qubit, we can
define qutrit dephasing and relaxation rates between differ-
ent levels, Γnm

ϕ ¼ P
i jhnjOijni − hmjOijmij2Sið0Þ and

Γnm
1 ¼ P

i jhnjOijmij2SiðωnmÞ, and associated matrix ele-
ments Mnm

1 and Mnm
ϕ , that generically describe the influ-

ence of the environment. Clearly the sensitivity to charge
noise is enhanced, as shown in Figs. 4(b) and 4(c), due to
the simple potential barrier allowing for direct phase slips.
Dephasing and relaxation rates all increase toward the
center of the charge BZ. However, the point q ¼ 0
represents a sweet spot and Mnm

ϕ ’s all show a dip at the

(a)

(b)

(c)

FIG. 3. (a) Schematics of circuit whose spectrum realizes a
spin-1 Dirac model. (b) Josephson potential of Eq. (5) for the
choice β ¼ 0.3 and γ ¼ 0.4, and φx ¼ π. The unit cell is
highlighted in white. (c) Spectrum of the system showing the
first three levels as a function of q1 and q2 for β ¼ 0.3, γ ¼ 0.352,
and φx ¼ π.
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FIG. 4. (a) Matrix elements Mnm
1 and Mnm

ϕ and spectrum of a
flux qutrit as a function of the flux bias δφx ¼ φx − π=2.
(b) Matrix elements Mnm

ϕ and spectrum of a flux qutrit as a
function of the offset charges q1 ¼ −q2 ¼ q. (c) Matrix elements
Mnm

1 and spectrum as a function of q. In (a)–(c) thick lines
indicate the three lowest energy eigenvalues.
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Dirac point, due to level coalescence, whereas only M01
1

shows a dip, signaling a transition decoupling. This shows
that a certain degree of coherence is still attainable by
proper operation. More interesting is the sensitivity to flux
noise. In Fig. 4(a) we plot the dependence of the relevant
matrix elements, together with the lowest energy levels of
the device, as a function of the applied flux φx at q ¼ 0. We
notice that only the energy of the flatband is sensitive to the
applied flux in a good flux window. We then notice that
Γ01
1 ¼ Γ12

1 ¼ 0 within numerical precision. This is due to
the fact that the flux in Eq. (6) couples only eigenstates j0i
and j2i. The physical picture is that the current is zero in all
the three lowest energy states at δφx ¼ 0. It also follows
that, as for the case of the FQ previously described, the
associated dephasing rate Γ02

ϕ reaches minimum when Γ02
1

is maximum. In turn, Γ01
ϕ and Γ12

ϕ are nonzero in the energy
window in which only the flatband energy varies with the
flux, and Γ02

1 is activated only at the Dirac point. The matrix
elements Mnm

1 and Mnm
ϕ also give information on the

accessibility of the quantum states by external means for
quantum computing purposes. We notice a complementar-
ity between charge and flux dependence and complete
access to the qutrit subspace is provided by M02

1 ðφxÞ,
M01

1 ðqÞ, and M12
1 ðqÞ, allowing for coherent manipulations.

Conclusions.—The analysis presented draws an analogy
between the 2e-periodic spectrum of a superconducting
circuit and the band structure of a crystal. The inclusion
of Josephson junctions characterized by higher-harmonic
current-phase relations, of current interest, can be employed
to generate modulations of the potential. Relevant tools and
ideas can be borrowed from band engineering in crystals and
exploited to flatten the dependence of the spectrum on
fluctuating external parameters. Our results show that the
modification of conventional setups can allow significant
gain in robustness to both charge and flux noise, providing a
path beyond current limitations of flux qubits.
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