
 

Theory of Transport in Ferroelectric Capacitors
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The spontaneous order of electric and magnetic dipoles in ferroelectrics and ferromagnets even at high
temperatures is both fascinating and useful. Transport of magnetism in the form of spin currents is
vigorously studied in spintronics, but the polarization current of the ferroelectric order has escaped
attention. We therefore present a time-dependent diffusion theory for heat and polarization transport in a
planar ferroelectric capacitor with parameters derived from a one-dimensional phonon model. We predict
steady-state Seebeck and transient Peltier effects that await experimental discovery.
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Ferromagnetism and ferroelectricity describe the order of
magnetic and electric dipoles that spontaneously forms
often far above room temperature and have much in
common [1]. The robustness of the order and the associated
stray magnetic and electric fields give rise to numerous
technological applications that affect our daily life. The
physics appears to be very different, however. The
Amperian electric (Gilbertian magnetic) dipoles break
(conserve) inversion symmetry, but conserve (break)
time-reversal symmetry. Furthermore, the static electric
dipolar interaction is much larger than the magnetic one.
According to the Bohr-van Leeuwen theorem, magnetism
is a quantum effect, while ferroelectricity can exist in the
classical realm. Nevertheless, the phenomenology of these
material classes displays close analogies. The dipolar order
is staggered in antiferromagnets as well as antiferro-
electrics. The electrocaloric (magnetocaloric) effect is
based on the dependence of the entropy of the electric
(magnetic) dipolar ensembles as a function of applied
electric (magnetic) field and temperature [2]. Both mag-
neto- as well as electrocaloric heat pumps appear to be
close to the market.
“Spintronics” addresses transport in magnetic structures

and devices [3]. Not only magnetic metals, but also
electrically insulating magnets are important spintronic
materials because spin waves carry angular momentum
or spin currents that can be excited and detected by heavy
metal contacts [4]. Spin caloritronics is the study of coupled
spin, heat and charge currents, covering the spin Seebeck
and spin Peltier effects [5,6]. Surprisingly, only very few
studies address transport in ferroelectrics (FEs).
Thermopolarization [7–9] and a dielectric Peltier effect
[10,11] have been reported. However, the theory under-
lying these studies inappropriately mixes electrocaloric and

pyroelectric effects, i.e., adiabatic transients between equi-
librium states, with transport or caloritronic, i.e., genuine
nonequilibrium phenomena.
In this Letter, we take the first steps in the equivalent to

spintronics in ferroelectrics by reporting a theory of
polarization and heat currents in electrically insulating
ordered FEs in response to electric field and temperature
gradients. The predicted polarization Seebeck and Peltier
effects turn out to be observable already for the most basic,
yet experimentally relevant device, i.e., a slab of a FE
between electric contacts (see Fig. 1), for which we solve
the time-dependent diffusion equation for the polarization
accumulation in the FE with boundary conditions to
metallic reservoirs. We estimate the parameters by solving
the Boltzmann equation for a one-dimensional chain of
elastically coupled dipoles, which is a microscopic model
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FIG. 1. (Left) Planar capacitor of an ordered ferroelectric with
thickness L between metal contacts connected by a voltmeter.
(Right) An applied temperature bias generates a steady-state
polarization accumulation (or chemical potential) distribution μ.
The green line illustrates the case of two opaque interfaces with
relaxation length λ (see text).
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for the FE excitations at temperatures sufficiently below the
phase transition. The analogies and differences with mag-
non transport are illuminating [12,13].
Linear response.—We consider a FE with metal contacts

in a planar configuration with polarization density pðxÞ
normal to the interfaces, which interacts with an electric
field EðxÞ as

H ¼ −
Z

pðxÞEðxÞdx: ð1Þ

Temperature (∂T) and electric field (∂E) gradients generate
heat jq and polarization jp current densities. Here jp
denotes the nonequilibrium transport of electrical polari-
zation in real space and should not be confused with the
dielectric displacement current, i.e., the time derivative of
the polarization. In the linear response regime, “currents”
and “forces” are related by a matrix of material and device-
dependent transport coefficients [14,15]. The caloritronic
relations can be summarized by a 2 × 2 linear response
matrix

�−jp
jq

�
¼ σ

�
1 S

Π κ=σ

�� ∂E
−∂T

�
; ð2Þ

where σðκÞ is the polarization (thermal) conductivity with
units m=Ω ðW=m=KÞ, while S (Π) is the ferroelectric
Seebeck (Peltier) coefficient with units V=K=m ðV=mÞ.
The dissipation rate _f ¼ −jp∂E − jq∂T=T implies the
Onsager-Kelvin relation Π ¼ TS. For a monodomain
simple FE all transport coefficients should be positive.
The electrocaloric (and pyroelectric) properties are

governed by the temperature and field dependent thermal
equilibrium polarization p0ðE; TÞ and heat q0ðE; TÞ
densities with susceptibilities χE ¼ ð∂p0=∂EÞT and
χT ¼ ð∂p0=∂TÞE.
Metallic contacts efficiently screen the surface charges.

When shorted, the electric field in the FE vanishes except
for small corrections due to a finite screening length [16]. A
constant applied voltage △Vext generates an electric field
Eext ¼ △Vext=L, but since ∂Eext ¼ 0 there can be no dc
Peltier effect. A temperature difference △Text between the
contacts generates a gradient ∂Text ¼ △Text=L. The polari-
zation current into a metal contact is dissipated quickly
without measurable effects. The principle observables are
the electric field-induced Peltier heat current and the
Seebeck thermovoltage over the contacts induced by a
polarization change

△V ¼ −
Z

p − p0

ϵ
dx; ð3Þ

where ϵ is the dielectric constant.
Diffusion.—The conservation relation for the FE polari-

zation reads

∂jp ¼ − _p −
p − p0

τ
ð4Þ

in terms of the relaxation time τ. A similar equation holds
for the heat accumulation, but we assume from the outset
that it relaxes much faster than that of the polarization, so
the local temperature instantaneously adapts to the external
one. We also assume that thermalization of the nonequili-
brium ferroelectric order can be modeled by an equilibrium
distribution with a local temperature Textðx; tÞ and a non-
equilibrium chemical potential μðx; tÞ [12]. It is convenient
to define μtot ¼ μþ PEext, where P is the electric dipole
of the unit cell such that the driving force in Eq. (2)
E → μtot=P. With p − p0 ¼ χEμ=Pþ χTðT − T0Þ, we
arrive at the diffusion equation for the nonequilibrium
chemical potential

∂2μ −
1

λ2
μ ¼ τ

λ2

�
_μtot þ

PχT
χE

_Text

�
ð5Þ

with diffusion length λ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
στ=χE

p
. In frequency (ω) space

∂2μ −
μ

λ̄2
¼ −

iωτ
λ2

_Fextðx;ωÞ ð6Þ

where Fext ¼ PEext þ χTText=χE and λ2=λ̄2 ¼ 1 − iωτ. For
a capacitor with contacts at x1 ¼ 0, x2 ¼ L, using ∂2Fext ¼
0 and short diffusion lengths λ ≪ L,

μðx;ωÞ ¼ AðωÞe−x=λ̄ þ BðωÞe−ðx−LÞ=λ̄

þ iωτ
1 − iωτ

Fextðx;ωÞ: ð7Þ

Interfaces.—The boundary conditions to the contacts fix
the integration constants A and B. The interface transport
coefficients obey an Onsager relation similar to Eq. (2).
Demanding continuity of the polarization current, the
boundary conditions for the chemical potential are gov-
erned by an interface conductance G

−Gμð0þÞ ¼ −σ∂μð0þÞ þ σΠP∂Text=T

GμðL−Þ ¼ −σ∂μðL−Þ þ σΠP∂Text=T: ð8Þ
We focus below on two limiting cases. A goodmetal contact
efficiently screens the polarization dynamics and suppresses
the chemical potential at the interface. This is the transparent
interface limit G ≫ σ=λ. The opposite limit of an opaque
interfacewithG ≪ σ=λ represents, e.g., a contact with a thin
non-FE spacer between the FE and the metal.
Solutions.—Close to the left interface

μðx;ωÞ ¼ λe−x=λ̄

λG
σ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − iωτ
p

�
−
PΠ∂T
T

þ iωτ
1 − iωτ

×

�
∂Fext −

G
σ
Fextð0;ωÞ

��
þ iωτ
1 − iωτ

Fextðx;ωÞ

ð9Þ

PHYSICAL REVIEW LETTERS 126, 187603 (2021)

187603-2



In the dc limit ω → 0

μdcðxÞ ¼ − λ
λG
σ þ 1

e−x=λPS∂Text: ð10Þ

The thermovoltage generated by a temperature difference

△Vdc ¼
λ

λG
σ þ 1

χE
ϵ

λ

L
S△Text ð11Þ

is maximized for an opaque interface G=σ → 0. This
voltage can be observed when the opposite interface is
transparent, i.e., does not accumulate any polarization. In
the symmetric capacitor sketched in Fig. 1, the accumu-
lations at the interfaces have equal moduli but opposite sign
and the thermovoltage vanishes. The theoretically possible
maximal thermovoltage in the weakly dissipative limit
(L ≪ λ) for one transparent and one opaque interface is
△Vmax ¼ χELS△Text=ð2ϵÞ, which can be compared with
the pyroelectric voltage −χTL△T̄=ϵ generated by a global
temperature change △T̄. When shorting the contacts the
charged capacitor generates a charge current pulse on the
scale of the RC time of the circuit.
At finite frequencies, the length and timescales λ and τ

govern the dynamics. We consider the transients generated

by switching on the external perturbation Fext ¼ FðΘÞ
ext ΘðtÞ,

where Θ is the step function, on a timescale faster than τ.
The Fourier transform back to the time domain can be
carried out by contour integration.
The transient polarization accumulation in the FE at a

transparent (left) interface generated by an electric field
pulse reads

μðx; t > 0Þ ¼ −e−t=τPEðΘÞ
ext erf

�
1

2

ffiffiffi
τ

t

r
x
λ

�
: ð12Þ

We recover the pure electrocaloric term in the bulk of the
FE μðx ≫ λ; t > 0Þ ¼ −e−t=τPEðΘÞ

ext , which dominates
the observable thermovoltage. The polarization current in
the absence of a temperature gradient is caused by the
leakage of the electrocaloric accumulation into the contact,
which on the left side assumes the form

jpðx; t > 0Þ ¼ −σ
ffiffiffiffiffi
τ

πt

r
e−ðt=τÞ−ðτ=tÞðx=2λÞ2

EðΘÞ
ext

λ
; ð13Þ

while that for the right contact has the opposite sign. The
associated Peltier heat current jq ¼ Πjp cools the FE and
heats the contacts or vice versa, with a possible interface
contribution.
In the opaque interface limit

μðx; t > 0Þ ¼ −PSλ∂TΘ
ext

�
e−x=λ −

1

2

�
e−x=λerfc

� ffiffiffi
t
τ

r
−

x
2λ

ffiffiffi
τ

t

r �
þ ex=λerfc

� ffiffiffi
t
τ

r
þ x
2λ

ffiffiffi
τ

t

r ���

− e−t=τ
�
−FðΘÞ

ext þ
PχT
χE

∂TðΘÞ
ext

�
xerf

�
1

2

ffiffiffi
τ

t

r
x
λ

�
þ 2λffiffiffi

π
p

ffiffiffi
t
τ

r
e−ðτE=tÞðx=2λÞ2

��
: ð14Þ

The polarization current vanishes at the interface x ¼ 0, but

μð0; t > 0Þ ¼ −PSλerfð ffiffiffiffiffiffiffi
t=τ

p
Þ∂TðΘÞ

ext

− e−t=τ
�
−FðΘÞ

ext ð0Þ þ P
χT
χE

∂TðΘÞ
ext

2λffiffiffi
π

p
ffiffiffi
t
τ

r �
:

ð15Þ

We recognize a Seebeck contribution caused by the buildup
of a polarization accumulation or depletion at the interface
that approaches the dc limit Eq. (10) for long times. The
second term is purely pyroelectric and corrected for
diffusion by the third term.
Phonon model.—The phenomenological theory does

require assumptions about the nature of the ferroelectric
phase transition, which may be, e.g., of the “order-disorder”
or “displacive” type. The magnitude of the caloritronic
parameters σ and Π can be either fitted to experimental
results or calculated from a microscopic model. In the
absence of both, we derive here estimates by a simple

model of one-dimensional diatomic chains at temperatures
below the phase transition that generates a permanent electric
dipole P ¼ δQ in each unit cell, where δ is the deformation
and Q the ionic charge. At finite temperatures the
polarization is affected by transverse phonons (not to be
confused with the soft phonons that trigger a displacive
phase transition) with maximum frequency ωop ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
C=M

p
,

where M is the ionic mass and C the force constant. We
introduce here the “ferron” model that the thermal
fluctuations leave P invariant, but reduce its projection
along the FE order. This is a valid approximation when
the intradipole longitudinal oscillation frequency is suffi-
ciently higher than ωop and the interdipole frequency. At
temperatures kBT ≫ ℏωop the Boltzmann equation for a
constant scattering relaxation time τr ≪ τ then leads to a
Peltier coefficient

Π ¼ jq
−jp

				∂T¼0

¼ Cδ2

P
; ð16Þ
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and conductivities

σ ¼ τr
Π2

ω2
op

8a
kBT; ð17Þ

κ ¼ σΠ2=T; ð18Þ
where a is the lattice constant. In this model, the electro-
caloric properties also depend on the Peltier coefficient

χE ¼ kBT
a3Π2

; χT ¼ −
kB
a3Π

�
1 −

E
Π

�
: ð19Þ

A stiffer material increases the heat relative to the polari-
zation current, suppressing polarization caloric and enhanc-
ing caloritronic effects. The figure of merit (disregarding the
thermal conductivity of other phonon bands)

ZT ¼ ðσ=κÞðΠ2=TÞ ¼ 1 ð20Þ
does not depend on the model parameters and temperature
(even when kBT≯ℏωop).
Estimates.—We choose room-temperature material

constants ωop ¼ 5 THz, a ¼ 0.4 nm, P ¼ 2 × 10−29 Cm,
δ ¼ 0.03 nm,C ¼ 25 J=m2, τr ¼ 1 ps, and τ ¼ 1 ns, which
leads to Π ¼ 10 MV=cm, χE ¼ 7 × 10−11 C=ðVmÞ,
χT ¼−2×10−4 C=ðKm2Þ, κ¼4W=ðKmÞ, σ¼10−15 m=Ω,
λ ¼ 130 nm, and ϵ=ϵ0 ¼ 2000 in terms of the vacuum
dielectric constant ϵ0. These numbers are rather arbitrary,
but close to the parameters of displacive FEs such as barium
titanate. The predicted dc thermovoltage induced by a temper-
ature gradient of ∂T ¼ 10 K=μm at an opaque interface is
then △V ¼ 2 mV. The integrated heat flow through a trans-
parent interface

R
jpð0; tÞdt excited by an electric field pulse

of EðΘÞ
ext ¼ 1 MV=cm is 9 J=m2. Because of the uncertainties

in the parameters and simplicity of the model these numbers
should be taken with a grain of salt.
Summary.—We predict polarization caloritronic effects

in planar capacitors filled with an electrically insulating
ferroelectric that may interfere with normal operation or be
used for energy applications and thermal management. The
present model can be extended into many directions, such
as Kelvin probe force microscopy of textured ferroelectric
surfaces [17], polar metals [18], and multiferroics [19]. We
focus here on polarization relaxation lengths that are short
compared to the sample dimensions, but this is not an
essential approximation. For example, large thermovol-
tages might be generated in boron nitride bilayers with a
switchable ferroelectric order [20].
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