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We explore the physics of novel fermion liquids emerging from conducting networks, where 1D metallic
wires form a periodic 2D superstructure. Such structure naturally appears in marginally twisted bilayer
graphenes, moire transition metal dichalcogenides, and also in some charge-density wave materials. For
these network systems, we theoretically show that a remarkably wide variety of new non-Fermi liquids
emerge and that these non-Fermi liquids can be classified by the characteristics of the junctions in
networks. Using this, we calculate the electric conductivity of the non-Fermi liquids as a function of
temperature, which show markedly different scaling behaviors than a regular 2D Fermi liquid.
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Introduction.—The ubiquity of Fermi liquids [1] makes
it particularly interesting to find and elucidate systems in
which the Fermi liquid theory breaks down, namely, “non-
Fermi liquid” (NFL) behavior. Experimentally, one of the
signatures of NFL is the resistivity exponent α defined as
the resistivity

ρxxðTÞ ¼ ρ0 þ cTα; ð1Þ

as a function of the temperature T. The Fermi liquid is
characterized by α ¼ 2. On the other hand, various values
of the exponent α ≠ 2 have been observed experimentally
in strongly correlated electron systems, indicating NFL.
However, a controlled theoretical description of NFLs in
d ≥ 2 dimensions remains a challenging problem [2–4]. In
this Letter, we propose a simple theoretical model of NFL
in d ≥ 2 dimensions at finite temperatures, including a
“strange insulator” with a negative exponent α [5–7], in
terms of a network made of 1D conducting segments.
While our theory is specific to network superstructures,

such systems appear in a surprisingly wide variety of
materials. To name only a few, marginally twisted bilayer
graphene [8–10], moire transition metal dichalcogenides
[11–13], helium atoms absorbed on graphene [14], and
certain charge-density wave materials [15–17] show such
superstructures. The possibility of engineering a network in
ultracold gas experiments is discussed in the Supplemental
Material [18]. A series of intriguing many-body pheno-
mena have been observed in these systems, including
superconductivity [17,19–21,36–38] and metal-insulator
transition [38,39]. Indeed, the NFL behavior with the
resistivity exponent varying with pressure or gate voltage
was observed in 1T-TiSe2 [17,21].

Motivated by these observations, we will study the
electric conduction through the network superstructure.
The electronic properties of conducting networks have been
studied theoretically in various contexts. For instance, our
previous works [15,40] have shown that 1T-TaS2 in nearly
commensurate charge-density wave states hosts a con-
ducting honeycomb network via STM [15] and that the
network supports a cascade of anomalously stable flat
bands, which can explain unusual enhancement of the
superconductivity [40] and higher-order topology [40,41].
Also the network systems have received some attention in
connection with the phenomenology of the magic-angle
graphene and Chalker-Coddington physics [42–51].
However, systematic investigation of electric conduction
through the network in the presence of electron interaction
has been largely lacking (see also phenomenological
discussions in [22,51]). In this Letter, we take a first step
toward elucidating universal NFL behaviors in networks.
First, generalizing the Landauer-Büttiker approach, we

can naturally derive the macroscopic Pouillet’s law so that
the conduction of the entire network is characterized by the
conductivity of a single junction. Furthermore, by includ-
ing the effects of the electron-electron interactions, we find
a remarkably broad set of NFL behaviors emerging
naturally in the conducting network systems. This origi-
nates from the Tomonaga-Luttinger liquid (TLL) nature of
the 1D segments of interacting electrons. We will explain
when and why NFL behaviors are expected. Furthermore,
we will argue that these NFLs can be one-to-one matched
with the characteristics of the junctions, i.e., the “boundary
conditions” for electrons at the junctions. As a conse-
quence, the resistivity exponent α of the network is
determined by the Luttinger parameter K, which describes
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each 1D segment, potentially explaining the intriguing
variation of the resistivity exponent observed in the
experiments [17,21].
Model.—In this Letter, as an example, we will mainly

consider the minimal honeycomb network model, which
consists of 1D segments of interacting spinless electrons as
in Fig. 1(a). The network is analyzed in terms of the
renormalization group (RG), starting from the microscopic
energy scale (such as the bandwidthW of the 1D wire). The
RG transformation should be terminated at the energy scale
given by the temperature T. At sufficiently low temper-
atures T ≪ W, the interacting electrons in the 1D segment
of length l can be described as a TLL characterized by a
Luttinger parameter K and the (renormalized) velocity vF,

HTLL;a ¼
vF
2

Z
l

0

dx

�
Kð∂xϕaÞ2 þ

1

K
ð∂xθaÞ2

�
; ð2Þ

where a is the index labeling each 1D segment. Here vF and
K are different from those of the bare, free electrons, due to
interactions between them (see Supplemental Material [18]
for our bosonization convention). Here we assume that
the electron filling per wire is incommensurate to avoid
unnecessary complications and that there is no disorder.
The effective Hamiltonian of the whole network reads

H ¼
X
a

HTLL;a þ
X
ha;b;ci

HY;ða;b;cÞ; ð3Þ

where HY;ða;b;cÞ is the local interactions between the three
neighboring wires around the Y junctions, such as the
hopping between the wires [see Fig. 1(a)]. Although the

precise form of HY;ða;b;cÞ depends on microscopic details,
we will show that the essential NFL behaviors are inde-
pendent of them and thus universal. In addition, we will
assume coupling of electrons with external environment
(typically phonons). However, the result is again indepen-
dent of its precise form, as we will explain later.
Strictly speaking, our model is based on the standard

TLL theory, which applies to systems with only short-range
interactions. Nevertheless, the long-range Coulomb inter-
action between electrons is often screened. Indeed, the TLL
behaviors are rather ubiquitous in actual quasi-1D materi-
als, e.g., [52–56]. As for the candidate materials hosting
network superstructures, the layered quasi-2D systems,
TaS2 and TiSe2, are metallic [17,19], and thus the screening
is expected. For 2D materials such as twisted bilayer
graphene, substrates [57] can provide screening of long-
range Coulomb interactions. Therefore, our model will
describe a wide variety of material realizations of electrons
on networks.
Dimensional crossover.—The energy scale ϵ can be

translated to the length scale lϵ ∼ ℏvF=ϵ. Thus, we can
introduce the crossover temperature

TX ∼
ℏvF
kBl

; ð4Þ

which is the temperature where the thermal coherence
length touches the wire length l [58]. For T ≲ TX, the
electrons can “feel” the finiteness of the wire length and
recognize the network as the 2D system. The physics of this
regime is essentially two dimensional. On the other hand,
above the crossover temperature, T ≳ TX, we are probing
the system at the length scale shorter than the segment
length l. Thus the system does not “know” that the wires
form a 2D network, and the physics is largely governed by
the properties of 1D wires and 0D junctions. Based on
these observations, we can draw a “phase diagram” in T
[Fig. 1(b)]. In real materials, we roughly estimate
TX ≳Oð90Þ K in 1T-TaS2 and TX ≳Oð50Þ K in twisted
bilayer graphenes (for l ¼ 140 nm, though it is tunable).
For 1T-TiSe2, we estimate TX ≳Oð6Þ K with some
assumptions. For the details and possible implications
in existing experimental data, see the Supplemental
Material [18].
We compare our crossover temperature [Eq. (4)] of the

network with that of coupled wire systems or sling LLs
[59–69]. There, the wires are aligned along the same
directions, and we assume only the short-ranged terms.
Then the crossover temperature toward a regular 2D FL
from the 1D TLL limit depends on both the intra- and
interwire terms [59–65]

Tcoupled wires
X ∼ t⊥ ·

�
t⊥
W

� 1
2−ΔðKÞ

; ð5Þ

FIG. 1. (a) Schematic picture of honeycomb network. Each link
is a TLL [Eq. (2)]. Left: shows a possible HY;ða;b;cÞ around a
single junction. Right: represents the scales of the problem in our
RG process. Here lkBT is the thermal coherence length at
temperature T and lkBT < l for T > TX, where TX is the crossover
temperature. (b) Phase diagram of the network in temperature.
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where t⊥ is the strength of the interwire hopping, andΔðKÞ
is its scaling dimension.
In this Letter, we focus on the electric conduction in the

network in the “1D TLL physics” regime

TX ≲ T ≪ W; ð6Þ

which has not been much explored. Since each segment is
described by a scale-invariant TLL, the temperature
dependence of the transport can be associated with the
properties of the junctions. Hence, to study the network in
this regime, we can utilize the RG analysis of junctions of
TLLs [23,24,58,70,71]. Indeed, we find that the emergent
NFLs in the network can be characterized by the RG fixed
points of a single junction of TLLs. We will show that the
RG fixed points of the junctions determine not only the
leading dc conductivities but also leading scaling correc-
tions, which are power law in temperature T. Namely, the
NFL behavior is universal in the 1D regime (6) where the
junction is described by a RG fixed point, which pins down
the scaling dimensions of all the possible perturbations.
Below we will explicitly illustrate this for the two simplest
fixed points [24,71], namely, “disconnected fixed point”
(K > 1) and “connected fixed points.” As our terminology
suggests, the connected fixed point gives rise to the
maximum conductances between the wires [24]. Some
properties and the stability of these fixed points are
reviewed in the Supplemental Material [18].
Conduction through the network.—Here we show that

the resistivity of the network is, in general, given by the
power law (1) where the exponent α is determined by
the Luttinger parameter of the 1D TLL segment and the
boundary conditions at the junctions. More precisely,
α ¼ 2ΔðKÞ − 2 where ΔðKÞ is the scaling dimension of
the leading irrelevant operators at the junctions. The
numerical coefficient c depends on microscopic details.
For example, for the disconnected fixed point, ρ0 ¼ 0 and

αðKÞ ¼ 2K − 2: ð7Þ

To establish this, we first show that the 0D electric
conductance at a single junction determines the 2D
conductivity of the whole network. For this, we imagine
a perfect 2D network made out of the identical Y junctions
[Fig. 1(a)]. We apply a uniform voltage drop across the y
direction and then calculate the electric current flowing
through the network (Fig. 2). In materials, electrons interact
with the external environment, such as phonons. In this
Letter, as we consider the fairly high temperatures T ≳ TX,
we assume that the electron-phonon coherence length is
shorter than the segment length l. Then the electrons in the
segment equilibrate, so that each segment has a well-
defined voltage. Under this assumption, we can immedi-
ately compute the conductivity of the whole 2D network
out of the “conductance tensor” of a single Y junction.

Each fixed point of the Y junction can be characterized
by its 3 × 3 conductance tensor Gab, which relates the
electric current at the ath wire with the voltage at the bth
wire (Fig. 2), i.e., Ia ¼

P
b GabVb. For the spinless

fermions, all the known fixed points [24,71] respect
the Z3 permutation symmetry between the three neighbor-
ing wires. Hence the conductance tensor can be para-
metrized only by the two numbers GS and GA. Imposing
Ia ¼

P
b GabVb at all the junctions, we can fix the electric

current at every wire. From the current, we obtain the
conductance of the entire network [18], which is found to
be proportional to the width and inversely proportional to
the length. (Similar discussions were given in [72,73].) In
this way, our network construction leads naturally to the
classical Pouillet’s law, and the conduction property of the
system can be characterized by constant conductivity
tensors

gxxðTÞ ¼
ffiffiffi
3

p
GSðTÞ=4; gxyðTÞ ¼ GAðTÞ=4: ð8Þ

The factors of 1=4 and
ffiffiffi
3

p
=4 have the geometric origin,

e.g., the size of the unit cell. We also checked gxxðTÞ ¼
gyyðTÞ and gxyðTÞ ¼ −gyxðTÞ [18]. While the classical
nature of the conduction is a natural consequence of the
assumed local thermalization (and thus decoherence) in
each segment, it is remarkable that the macroscopic
property (conductivity) is determined by the property of
the microscopic junctions, independent of the details of the
thermalization. This can be regarded as a generalization of
the Landauer-Büttiker approach [74] to extensive macro-
scopic systems of interacting electrons.
Hence, we next compute GS and GA of a Y junction at

finite temperatures T. For this, we generalize the results
of [23,24,58,71] to the Y junctions. For instance, at the
disconnected fixed point, the leading perturbation is the
interwire hopping [Fig. 1(a)]

FIG. 2. Conduction through the network. Inset: represents a
single Y junction, where voltage and current satisfy
Ia ¼

P
b GabVb. The voltage is uniform in x and increases in

y, as depicted in the figure. Wires with the regions of the same
colors have the same voltage.
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HY ¼ −t
X

j¼1;2;3

ψ†
jð0Þψ j−1ð0Þ þ H:c:;

where ψ0 is identified with ψ3, and ψ jð0Þ represents the
electron annihilation operator of the jth wire at the Y
junction, i.e., x ¼ 0. Up to the second order in t, we
find[18]

GSðTÞ ≈ 0þ 2e2t2

h
ðπτcÞ2K

Γð1
2
ÞΓðKÞ

Γð1
2
− KÞ T

2K−2; ð9Þ

with τc being the inverse of a UV cutoff W of Eq. (2). The
first term 0 in GS is the universal conductance of the
disconnected fixed point [24,71]. The second term ∼T2K−2

represents the correction from the leading irrelevant per-
turbationHY above. They are evaluated within the standard
linear response theory combined with the perturbative
expansion in HY [18,23,58]. The correction ∼T2K−2 is
consistent with Eq. (1), because the scaling dimension of
HY is ΔðKÞ ¼ K. As we have seen in Eq. (8), this
conductance of the single junction directly gives the
conductivity of the 2D network and the resistivity exponent
is given as in Eq. (7). A fixed point is stable as far as the
scaling dimension of the perturbation is larger than 1.
Hence the disconnected fixed point is stable for
ΔðKÞ ¼ K > 1. Furthermore, this disconnected fixed point
is the only known stable fixed point for repulsive inter-
actions [24,71], and so this strange insulator behavior with
the power-law divergence of the resistivity at low temper-
atures is generic.
For attractive interaction K < 1, the interwire tunneling

is a relevant perturbation. Equation (9) could describe the
conductivity at higher temperatures if the interwire cou-
pling at the junction in the microscopic model is weak. In
this case, the same expression (9) now describes the power
law with a positive resistivity exponent (7), namely, the
typical behavior of a metallic NFL. When the attractive
interaction is sufficiently strong so that K < 1=3, as the
temperature is lowered, the junction is governed by the
connected fixed point. This fixed point is stable for
K < 1=3 because the scaling dimension of the leading
irrelevant operators at this fixed point is 1=3K [18,24].
Taking the operators into account, we can again evaluate
the conductance within the standard linear response theory
[18,23,58]

GSðTÞ ≈
2

3K
e2

h
− CðTð2=3KÞ−2Þ; ð10Þ

where we suppressed all the unimportant constants into C.
As before, the first term is the universal conductance of
the connected fixed point [24,71], and the second term
∼T2=ð3KÞ−2 is the correction from the perturbative expan-
sion of the leading irrelevant operators (see Supplemental
Material [18]). If the interwire coupling at the junction is
strong, Eq. (10) would describe the entire temperature
range where the 1D TLL description is valid. This also

gives the metallic NFL behavior with the decreasing
resistivity at lower temperatures, but with the resistivity
exponent α ¼ 2=ð3KÞ − 2 > 0.
For both the disconnected and connected fixed points,

GA and thus the Hall conductivity gxy vanish, as expected
from the time-reversal invariance of the underlying model.
On the other hand, for the network of 1=3 < K < 1 under a
uniform magnetic field, the chiral fixed point of GA ≠ 0 is
stabilized,

GSðTÞ ≈
4K

1þ 3K2

e2

h
; GAðTÞ ≈

4

1þ 3K2

e2

h
; ð11Þ

up to the perturbative correction ∼OðT8K=ð1þ3K2Þ−2Þ. Such
network is metallic and has the “universal” Hall conduc-
tivity, which is determined by the Luttinger parameter
[18,22]. This result is consistent with [22], which consid-
ered the electric conduction across a network consisting of
the chiral fixed point. We note that, however, [22] missed
much of the NFL physics that we explored here (see the
comparison in the Supplemental Material [18]). While the
realization of the chiral fixed point requires an explicit
breaking of the time-reversal invariance, in principle, the
required breaking can be infinitesimal, e.g., by a very weak
magnetic field through the junctions [24,71]. This behavior
is again quite different from a normal metal, in which the
Hall conductivity is proportional to the applied magnetic
field. We also note that, for K > 1 or K < 1=3, the chiral
fixed point is unstable. Instead, the connected and dis-
connected fixed points are stable as discussed above.
Let us give a few remarks on Eqs. (9)–(11), which

represent the conductance in the vicinity of three different
RG fixed points for the junction. First of all, in all cases,
the conductivity of the network exhibits a power law in
temperature, whose exponent continuously evolves as the
Luttinger parameter K varies. This is the manifestation of
the exact marginality of the Luttinger parameter.
Essentially, this marginality allows the scaling dimension
of electrons vary smoothly, which translates as the con-
tinuously changing α in Eq. (7). In experiment, this means
that, as the external parameters, e.g., pressure and gating,
are tuned, the exponent of the temperature dependence of
the resistivity will continuously change. This is markedly
different from the behavior of a regular Fermi liquid, where
the exactly marginal deformation, i.e., the change of the
Fermi velocity, does not alter the temperature dependence
of the transport coefficients.
Finally, we comment on possible effects of disorders on

transport. There are distinct types of the disorders at
different length scales. For instance, microscopic impurities
in TLLs will induce a power-law correction ∼T2=K−2 to the
conductivity [23,58,75], which will add up to those from
the junctions. Similarly, randomly missing (completely
disconnected) Y junctions will introduce an additional
∼T2K−2 correction. Details are given in the Supplemental
Material [18].
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Conclusions.—We have demonstrated the emergence of
a novel class of NFLs in the conducting networks, whose
universal properties are controlled by the RG fixed points
of the junction of TLLs. This makes our network system
a unique theoretical platform, where the isotropic NFL
behaviors in d ≥ 2 dimensions can be deduced from the
well-established theory on strongly correlated electrons in
1D. The NFLs we have proposed are potentially already
out there [10,17–19,21] in experiments and/or can be
easily realized and verified in currently available setups.
For instance, one can artificially pattern the network
superstructure in experiments [76]. In twisted bilayer
graphenes, the crossover temperature TX, which is related
with the length l of the underlying wires, can be
controlled by tuning the twisting angle. Hence, in these
systems one can look at the dependence of the con-
ductivities on temperature and twisting angles to observe
the emergence of the putative NFLs, which will be quite
spectacular.
Once the power-law behavior of the resistivity is

observed, the Luttinger parameterK for the TLL describing
each segment is inferred from the resistivity exponent α.
Our scenario can then be verified by a consistency check
with an independent determination of the Luttinger param-
eter of the 1D segment, for example, by angle-resolved
photoemission spectroscopy measurement of the local
density of states ∼jωjðKþ1=KÞ=2−1 [77]. The Luttinger
parameter and scaling dimensions ΔðKÞ of the leading
irrelevant operators at the junctions can be also extracted
from the specific heat CvðTÞ and susceptibility χðTÞ.
For example, the specific heat has two contributions:
one from the 1D TLLs and the other from the junctions
[78–80]. The 1D part scales as ∼T, but the junction
contribution has ∼T2ΔðKÞ−2 [78–80]; hence Cv ∼ c1T þ
c2T2ΔðKÞ−2 in total and similarly χ ∼ b1 þ b2T2ΔðKÞ−3. In
the future, it will be interesting to investigate explicitly the
effect of the long-range Coulomb interaction on the
network NFLs, following the related studies on a single
TLL and coupled wires [81–87].
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