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Starting from Shannon’s definition of dynamic entropy, we propose a theory to describe the rare-event-
determined dynamic states in condensed matter and their transitions and apply it to high-pressure ice VII. A
dynamic intensive quantity named dynamic field, rather than the conventional thermodynamic intensive
quantities such as temperature and pressure, is taken as the controlling variable. The dynamic entropy
versus dynamic field curve demonstrates two dynamic states in the stability region of ice VII and dynamic
ice VII. Their microscopic differences were assigned to the dynamic patterns of proton transfer. This study
puts a similar dynamical theory used in earlier studies of glass models on a simpler and more fundamental
basis, which could be applied to describe the dynamic states of more realistic condensed matter systems.
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Matter exists in the form of states, wherein the physical
properties vary continuously before abrupt changes happen
upon transitions [1]. Abundant states have constituted our
understanding of matter from different aspects, such as
crystal states characterized by atomic structures [2,3] and
superconductors and charge density waves characterized by
electronic structures [4–7]. Recent years have witnessed
considerable progress on simulating these states, especially
the ones characterized by atomic structures, along with
thorough exploration of rare events and their dynamics
[8,9]. Here, rare events mean dynamic activities occurring
out of equilibrium and with constraints; e.g., atom A cannot
move until atom B moves out of the way [10] and the ice
rule [11]. Description of these dynamic states and their
transitions using conventional thermodynamics, however,
is difficult.
One prominent example exists in high-pressure (P) ice.

At P’s of 2–80 GPa and ∼500 K, its states of matter are
dominated by akin body-centered-cubic (bcc) structures,
e.g., ice VII, dynamic ice VII, and superionic (SI) ice
[12–20]. Conventionally, these states can be attributed to
solid with atoms localized in the crystalline sites [Fig. 1(a)]
or liquid with atoms traveling ergodically over the whole
configurational space [Fig. 1(b)]. The so-called dynamic
ice VII, however, presents an in-between feature; i.e.,
protons are localized on their sites but can occasionally
hop to others in a timescale of picoseconds and longer
[Fig. 1(c)]. It was considered as a distinct state from ice VII
in earlier studies [Fig. 1(d)], due to the occurrence of
dynamical translational disorder (proton hopping along
hydrogen bonds) [13,15]. One may intuitively interpret this
as the protons cannot be transferred in ice VII and can in

dynamic ice VII. However, this criterion is questionable, as
the structures of the bcc skeleton of oxygens remain the
same and there is no transient change in the structural order
or thermodynamic properties [Fig. 1(e) and Refs. [21–23] ].
A paradox arises: If the timescale is long enough, proton
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FIG. 1. (a) Solid, (b) liquid, and (c) the in-between state.
(d) The phase diagram of bcc ice. There are well-defined solid
and liquid states in the shadowed region, while in the white region
the boundaries between ice VII, dynamic ice VII, and SI remain
controversial. (e) Density and thermodynamic state function at
500 K. Inset: bcc ice structure. In the bcc skeleton formed by
oxygen (red), protons intersperse in the covalent sites (blue) of
neighboring oxygen pairs. The equivalent sites (green) can be
occupied through transfer motions. The other sites (gray) consist
in another hydrogen bonding network.
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transfer can also occur in ice VII. Consequently, ice VII and
dynamic ice VII should be considered as a single state
where proton transfer can occur in the long time limit,
though with large numerical variances in the transfer rates.
In this Letter, we present a theory to describe the

dynamic states determined by rare events and their tran-
sitions, starting merely from Shannon’s definition of
the dynamic entropy, and apply it to high-P ice VII. By
dividing the space into pieces of components, we decom-
pose the atomic trajectories of protons into intracomponent
localized motions and intercomponent diffusive motions.
The dynamic field, a central quantity in the dynamic
partition function, is taken as the controlling variable for
the intercomponent motions. This field can reveal the
different patterns of dynamic motions related to dynamic
constraint and, hence, the transitions between dynamic
states. In the simulations, we derived its values for each P
by mapping to a constructed ensemble, nominated as an
isostructural isodynamic ensemble. Two states were dis-
criminated using the dynamic entropy versus dynamic field
curve in the stability region of high-P ice VII, and a turning
P is obtained by approaching the simulation results to the
long time limit. By resorting to the potential energy surface
(PES), the mechanism underlying this transition is detailed.
We start with descriptions of the dynamic properties. In

previous studies, the diffusion coefficient was taken as the
order parameter in discriminating static and dynamic ice
VII [9,24–26]. Considering the rare-event nature of proton
transfer at low temperatures (T), we resort to a fundamental
property, the protonmotions. There are two types: (i) liquid-
like diffusive motion as a proton transfers to another
equivalent site; (ii) solidlike localized motion as a proton
oscillates around its own equilibrium site. The essential
dynamical information is muffled by thermal noises, since
the diffusive motions are rare compared to the localized
motions. In order to highlight the diffusive motions, the
concept of “components” is introduced [27]. One compo-
nent is a close set of neighboring phase points containing a
local minimum of the PES:

Ω ¼∪α Ωα; with Ωα ¼ fðx; pÞ ∈ Ωαg: ð1Þ

Ω represents the whole phase space, and Ωα is the
component. The components are assumed to have a
confinement condition (atoms stay in one component for
a long time) and internal ergodicity [27]. We define them
using Voronoi decomposition, by constructing the Wigner-
Seitz cell of the equivalent sites [28]. Upon this, we
can describe the diffusive motions by intercomponent
hoppings, with each being called an activity. The activity
rate k is defined by the number of activitiesK occurring in a
single component and a certain observation time tobs, with
k ¼ K=tobs. Extensive dynamic quantities scale with tobs,
but, when no ambiguity exists, we omit tobs in the
equations.

The core quantity to describe a system is its partition
function and the relevant degrees of freedom (d.o.f.).
Thermodynamic-intensive quantities, e.g., T and P, are
the conventional choice to identify the equilibrium states.
In bcc ice, however, the diffusion coefficient presents gradual
changes in a wide range of T ’s and P’s, while discontinuous
change in structural order and state function cannot be
observed. This implies that an extra d.o.f. other than T and P
should be resorted to. Here, we employ a dynamic form of
the partition function and use an extra d.o.f. named “dynamic
field(s)”. It was introduced first in studies of glass transition
as an auxiliary field for enhanced and reduced sampling
[29–35]. By interpreting glass transition as a space-time
phase transition, Hedges et al. proposed that s is its
controlling variable [33]. This s, however, was a pure
predefined mathematical tool, and this scheme is limited
to glass models. We derive the value of s for each ðT; PÞ by
mapping to a constructed ensemble and, hence, extend this
dynamical theory to realistic bcc ice, as detailed later.
Following the thermodynamic convention, we write the

partition function of the isodynamic ensemble (with the
same s, named analogously from isothermal ensemble) in
the form of the sum of probabilities

ZDðsÞ ¼
X

K

pðs; KÞ ð2Þ

to find the system in particular dynamic states. The
partition according to K is applied [36]. The subscript D
denotes dynamics. Equation (2) becomes Z0 ¼

P
K p0ðKÞ

when s ¼ 0, where p0ðKÞ is the unbiased distribution.
When one applies a finite s, pðs; KÞ takes the form of
p0ðKÞe−s·K by making analogy to the thermodynamic
formula in earlier studies [33,38,39]. Here, we note that
an elegant mathematical form of the dynamic partition
function can be derived by using merely the information
theory [40]. According to Shannon [41], the dynamic
entropy within tobs is

SDðsÞ ¼ −
X

K

pðs; KÞ lnpðs; KÞ: ð3Þ

A reasonable pðs; KÞ should give statistical results con-
sistent with the observed ones; i.e., pðs; KÞ and hKis ¼P

K pðs; KÞ · K must conform to p0ðKÞ and K0 when
s ¼ 0. The variation of pðs; KÞ subjected to the least bias
estimation from known results and the maximum of
entropy SD [40] is

δ

�
SDðsÞ þ

X

K

λ1;K½pðs; KÞ − p0ðKÞ� þ λ2½hKis − K0�
�

¼
X

K

δpðs; KÞf−½lnpðs; KÞ þ 1� þ λ1;K þ λ2Kg ¼ 0;

ð4Þ
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which leads to

pðs; KÞ ∼ e−ðλ1;K−1Þ−λ2K: ð5Þ

Here, λ1;K and λ2 are the Lagrange multipliers of constraint. If
we define s ¼ λ2 and the implicit-K part as p0ðkÞ, we have

pðs; KÞ≡ p0ðKÞe−s·K: ð6Þ

The dynamic partition function

ZDðsÞ ¼
X

K

e−s·Kp0ðKÞ ð7Þ

is then obtained.
The dynamic field can reveal the intrinsic correspon-

dence among different thermodynamic configurations.
Dynamic properties are fundamentally controlled by s,
through hKis ¼ ∂ZDðsÞ=∂s. Therefore, upon artificially
changing s, Hedges et al. claimed that for each ðT; PÞ the
system would experience a transition between the active
and inactive states [33]. In our cases, the principal common
ground between ice VII and dynamic ice VII is their bcc
structure. Correspondingly, we found that similar s depend-
encies of ZDðsÞ among different ðT; PÞ’s exist, which can
reveal their internal connection on dynamics. To quantify
this, we resort to an isostructural isodynamic ensemble. In
front of the aforementioned isodynamic, we put a word
“isostructural” to emphasize the geometric requirement,
i.e., the states within the region of ice VII and dynamic ice
VII. This ensemble contains all the information of thermo-
dynamic and dynamic states of interest. Therefore, it can
describe the transition between states within this bcc
region. It consists of multiple subensembles, and its
partition function can be derived accordingly, as

ZbccðsÞ ¼
X

ðT;PÞ;bcc
ZD;ðT;PÞðsÞ · e−βGðT;PÞ

¼
X

K

e−s·K
X

ðT;PÞ;bcc
p0;ðT;PÞðKÞe−βGðT;PÞ

∼
X

K

pbccðs; KÞ: ð8Þ

ZD;ðT;PÞ represents the subsequent isodynamic ensemble for

one ðT; PÞ, and e−βGðT;PÞ is its thermodynamic weight.
GðT; PÞ is the Gibbs free energy per component. From
Eq. (8),

pbccðs; KÞ ¼ 1

ZbccðsÞ
e−s·K

X

ðT;PÞ;bcc
p0;ðT;PÞðKÞe−βGðT;PÞ ð9Þ

can be derived and then SD;bccðsÞ can be calculated. A
detailed derivation of Eq. (8) is shown in Ref. [42]. Using a
mapping from the unbiased ZD;ðT;PÞðs ¼ 0Þ to ZbccðsÞ, a

referenced dynamic field sref is determined for each ðT; PÞ.
The rule is to ensure that the expectation value of the
isostructural isodynamic ensemble at s ¼ srefðT; PÞ equals
its unbiased correspondence, i.e.,

hkiZD;ðT;PÞðs¼0Þ ¼ hkiZbcc½s¼srefðT;PÞ�: ð10Þ

k is taken here to determine sref , while choices of other
dynamic quantities are also allowed. This scheme enables
learning the transition between different dynamic states
solely from sref .
In order to sample the trajectory space, we performed

extensive molecular dynamic (MD) simulations. This is
doable only recently with machine learning potentials
[26,48]. The simulation of each (T, P) contains samplings
up to 1 × 107 time steps and a timescale of a few nano-
seconds. For simulation details, please see Ref. [42].
The protons are assigned to their components at each time
step [Figs. 2(a)–2(c)]. The trajectories are decomposed into
intracomponent localized motions [Fig. 2(c), horizontal solid
lines] and intercomponent diffusive motions [Fig. 2(c),
dashed lines]. We count the number of activities at
each component and present the total distribution p0ðKÞ
in Fig. 2(d). At 10–30 GPa, p0ðKÞ concentrates at K ¼ 0
and falls sharply at nonzero values, since few proton
transfers happen. Above 40 GPa, there are rate peaks at
finite K, which extend to higher values of K with increasing
P, due to easier proton transfers. Consistent with this, the
inactive sites dominate at low P, whose ratio gradually drops
to zero at high P [the inset in Fig. 2(d)]. SD shows two
distinct parts [Fig. 2(e)]. However, the gradual transition
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FIG. 2. (a) Schematic of the PES of proton transfer, (b) the
realistic trajectory in coordinate space, and (c) the trajectory in
component space. dsite is the distance of the proton to its
equilibrium position inside each component, in the unit of
fractional coordinate of the simulation cell. (d) p0ðKÞ at different
Ps with tobs ¼ 2 ps (10 000 steps). The inset in (d) shows the tobs
dependence of the percentage of inactive sites for KðtÞ ¼ 0.
(e) SD computed from p0ðKÞ. The dashed lines and shadowed
region are guides for the eye.
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with wide P range [Fig. 2(e), shadowed region], which does
not disappear with increasing the simulation scale, is beyond
the scope of P-controlled phase transition (where the
transition should be abrupt in P). In other words, P can
reveal the dynamic difference of these states, but a native
dynamic perspective is more requisite.
One unique perspective in describing such a transition is

offered by s. When s is increased (decreased), the activities
are suppressed (enhanced) [Eq. (7)]. This trend applies to
all P’s. However, there are two different s dependencies.
ZD;ðT;PÞðsÞ and hki are insensitive to s at low P, while they
can be motivated by lowering s at high P, as shown by the
almost horizontal lines at low P and the finite slopes at high
P in Figs. 3(a) and 3(b). This qualitative difference can be
visualized better via the SD versus sref curve in Fig. 3(c).
There are two distinct regions: a large-sref region with
nearly zero SD, mapping to low P, and a small-sref region
with rapidly increased SD, mapping to high P. The change
in slope becomes sharper with increasing tobs. Because of
the limited sampling scale, the transition point is practically
determined by the intersection of extrapolated lines
of two ends at a finite tobs (Fig. S7 [42]). Its dependencies
on tobs can be well fitted by an exponential form [inset
in Fig. 3(c)]. The converged value for tobs → ∞ is
stran ¼ −0.37, mapping to P ≈ 32 GPa. This is consistent
with the one predicted by pbccðs; KÞ and pbccðs; T; PÞ; see
details in Ref. [42]. The P is also consistent with Ref. [24].
As the proton transfer might be induced by quantum
tunneling, there should be a correction on stran by

considering quantum nuclear effects (QNEs). Recently,
tremendous progress was made in simulations of short time
dynamics with QNEs included, using methods like centroid
MD and ring polymer MD [49–53]. Long time simulations,
however, are still challenging. Here, we use a moderate T
(500 K), focus on presenting a theory to describe dynamic
states, and leave QNEs for future studies. We also note that
stran may not mean a phase transition point. It is more like a
weaker singularity as the crossover of different dynamic
states [54,55]. Clarification of its nature is also required in
future studies.
The behavior of SDðtobsÞ toward the long time limit roots

in homogeneity. When the system is dynamically homo-
geneous, the activities are uniformed, wherein SDðtobsÞ can
be derived (pp. 15–17 in Ref. [42]), as

SDðtobsÞ ¼
1

2
ln tobs þ const: ð11Þ

Otherwise, SDðtobsÞ is in between the static limit as Oð0Þ
and the homogeneous limit in Eq. (11). At high P,
SDðtobsÞ’s converge to Eq. (11) [Fig. 3(d)]. The required
tobs to demonstrate this is reduced for higher P, consistent
with lower sref. At low P, SDðtobsÞ’s are greatly off the ln tobs
trend, and the system is dynamically inhomogeneous.
When tobs → ∞, the high-P end retains the shape, as their
SDðtobsÞ’s differ by only a time-independent constant and
are uniformly lifted by 1

2
ln tobs. The low-P end, however,

remains flat. The crossing region witnesses a gradual
change, indicating its high-order nature.
Now we detail the proton transfer mechanisms by analyz-

ing the PES. Dynamic constraint is of central importance.
The realistic barrier does not produce absolute confinement;
thus, the proton is accessible to another component at
tobs → ∞. When this happens, the system is driven to an
energetically uncomfortable state with the ice rule tempo-
rarily broken [Fig. 4(a), solid line]. Two routes exist to restore
the ice rule, via a retrieving motion of the same proton
[Fig. 4(a), dashed line] or via collective motions of more
protons [Fig. 4(b), solid line]. When sref is large (the dynamic
constraint is strong), the system prefers the former. This can
be visualized by the PES [Fig. 4(c)], as the neighboring
protons are unwilling to join the transfer. A contrast case
exists when sref is small (the dynamic constraint is loosened),
and the system prefers the latter. As shown by the flat bottom
in Fig. 4(d), the neighboring protons are allowed to
join a collective transfer [56,57]. These can also be seen
via the coordination number of oxygens [42], as oxygens
with 4- and 0-bonded protons appear only at high P.
Structure almost determines dynamics, establishing a

convention that thermodynamic quantities native for equi-
librium phase transitions are used to describe transition
between different dynamic states. However, this fails when
rare events are important. Our scheme demonstrates the
power of the dynamic field in describing the nature of
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dynamic states when they are determined by rare events and
their transitions. Beyond this, the dynamic field also offers
a numerical approach to access the dynamic constraint, by
providing guidance on where different dynamic mecha-
nisms exist. Despite the dynamic field being derived here
numerically, it is of profound theoretical significance in
future studies to specify its microscopic interpretation
(analogous to those of T and P), based on which one
can define the dynamic states rigorously as dynamic
phases. It should also be noted that such analysis can
apply to more realistic systems other than bcc ice, e.g., the
hexagonal close-packed Fe system with a strong premelting
effect [58] and the cubic Ca system with 1D cooperative
diffusion [59]. Considering the ubiquity of dynamic con-
straint, we believe that this theory will bring new under-
standing to the fundamental question of the dynamic nature
of condensed matter.
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