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The chiral anomaly is a fundamental quantum mechanical phenomenon which is of great importance to
both particle physics and condensed matter physics alike. In the context of QED, it manifests as the
breaking of chiral symmetry in the presence of electromagnetic fields. It is also known that anomalous
chiral symmetry breaking can occur through interactions alone, as is the case for interacting one-
dimensional systems. In this Letter, we investigate the interplay between these two modes of anomalous
chiral symmetry breaking in the context of interacting Weyl semimetals. Using Fujikawa’s path integral
method, we show that the chiral charge continuity equation is modified by the presence of interactions
which can be viewed as including the effect of the electric and magnetic fields generated by the interacting
quantum matter. This can be understood further using dimensional reduction and a Luttinger liquid
description of the lowest Landau level. These effects manifest themselves in the nonlinear response of the
system. In particular, we find an interaction-dependent density response due to a change in the magnetic
field as well as a contribution to the nonequilibrium and inhomogeneous anomalous Hall response while
preserving its equilibrium value.
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Introduction.—Modern condensed matter physics has
benefited greatly from concepts originally introduced in the
context of high energy physics. One such concept is the
chiral anomaly: the breaking of classical chiral symmetry in
a quantum theory [1,2]. Within QED, it arises through the
need to regularize certain loop diagrams which contain
differences of linearly divergent integrals. The appropriate
regularization can either preserve charge conservation
symmetry, chiral symmetry, or some combination of the
two but not both. On physical grounds, the first of these is
chosen, which brings about a source term for the diver-
gence of the chiral current jμ5 whenever electric and
magnetic fields are not orthogonal,

∂μj
μ
5 ¼

e2

2π2
E ·B: ð1Þ

Here, E and B are the electric and magnetic fields and we
have set c ¼ ℏ ¼ 1. This expression, although derived
from a single triangle diagram in perturbation theory,
was shown to obey nonrenormalization theorems; higher
order terms cannot modify the form of this equation and are
accounted for by replacing the bare fields and charge with
their renormalized values [3]. Later, this was reinforced
when it was discovered that the chiral anomaly manifests in
the path integral formalism through the noninvariance of
the measure under a chiral symmetry transformation [4–6].
The chiral anomaly is present for all odd spatial

dimensions [7–9] but is particularly important in one

spatial dimension where it is crucial for the proper treat-
ment of interacting fermionic theories through bosonization
[10,11]. A prominent feature therein is that chiral symmetry
breaking can occur due to the presence of interactions even
when electromagnetic fields are absent. Indeed, it is well
known, although perhaps not expressed in this way, that the
chiral charge conservation equation for interacting fer-
mions is [12,13]

∂μj
μ
5 ¼

λ2

2π
∂1j15; ð2Þ

where λ2=2 is the strength of the density-density inter-
actions, and the index 1 refers to the spatial direction. By
writing the expression in this form, we have separated out
the part which appears due to the noninvariance of the path
integral measure. If an electric field is present also, it will
appear as an additional eE=π term on the right-hand
side [14].
Chiral symmetry is an emergent low energy property in

condensed matter systems appearing due to an even number
of chiral modes crossing the Fermi surface which are
actually part of the same band. In this respect, the anomaly
can be understood in noninteracting systems via the
pumping of chiral charge through the bottom of the band
from one node to another [14]. Despite not being a
fundamental symmetry, it is intimately related to many
key concepts including quantized Hall conductance,
e.g., through Laughlins’s argument [15], and more recently,

PHYSICAL REVIEW LETTERS 126, 185303 (2021)
Editors' Suggestion

0031-9007=21=126(18)=185303(6) 185303-1 © 2021 American Physical Society

https://orcid.org/0000-0003-2547-4387
https://orcid.org/0000-0003-2418-7888
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.185303&domain=pdf&date_stamp=2021-05-07
https://doi.org/10.1103/PhysRevLett.126.185303
https://doi.org/10.1103/PhysRevLett.126.185303
https://doi.org/10.1103/PhysRevLett.126.185303
https://doi.org/10.1103/PhysRevLett.126.185303


the existence of topological metals such as the Weyl
semimetal [16–26]. In this Letter, we examine the interplay
between the two modes of chiral symmetry breaking
expressed through Eqs. (1) and (2) in the context of
interacting condensed matter systems. Specifically, we
show that for purely local four-fermion interactions, the
anomaly can be written as

∂μj
μ
5 ¼

e2

2π2
Ẽ · B̃; ð3Þ

where Ẽ and B̃ defined below contain the effect of both the
electromagnetic fields in a manner similar to Eq. (1) and the
interactions through terms like in Eq. (2).
The effect of interactions in Weyl semimetals has been

considered previously using perturbative means [27–31]. In
contrast, our work takes a nonperturbative approach and
considers the interactions from the outset through the chiral
anomaly itself. By utilizing Eq. (3), we predict a number of
new nonperturbative phenomena found beyond linear
response which can be expected in interacting Weyl
semimetals and attributed to the chiral anomaly.
Model—We consider a model of interacting Dirac

fermions ψ in the presence of a constant background
magnetic field in 3þ 1 dimensions. The action is S ¼
S0 þ Sint with

S0 ¼
Z

d4xψ̄ðxÞ½i=∂ þ e=A�ψðxÞ; ð4Þ

where we have employed Dirac slash notation and
ψ̄ ¼ ψ†γ0. For later convenience, we split the gauge field
Aμ ¼ Aμ

0 þ Ãμ into a part describing the magnetic field
pointing along the ẑ direction Aμ

0 ¼ xBzδ
μ
2 and a perturba-

tion around it Ãμ. The magnetic field breaks the Lorentz
invariance down to rotational invariance in the transverse
plane spanned by the x̂ and ŷ directions and reduced
(1þ 1)-dimensional Lorentz symmetry in the longitudinal
directions. The general short-range current-current inter-
action is of the form

Sint ¼ −
1

2

Z
d4xλ2μνjμðxÞjνðxÞ; ð5Þ

where jμðxÞ ¼ ψ̄ðxÞγμψðxÞ is the fermion current with
λ2μν ¼ λμαλ

α
ν being the interaction strength. The methods we

outline in this Letter are quite general and can be applied to
arbitrary interaction strengths; however, for clarity, at times
we have restricted our focus to special cases of λ2μν ¼ λ2ημν
which preserves Lorentz symmetry, and λ2μν ¼ λ20η0μη0ν þ
λ23η3μη3ν which preserves the reduced symmetries of our
system if λ20 ¼ λ23 and which gives density-density inter-
action when λ23 ¼ 0 [32]. Evidently, depending on the
choice of λμν, some of the symmetries of the model may be
broken, e.g., Lorentz invariance, but they do not break the

classical chiral symmetry. These interactions are renorm-
alization group irrelevant and typically are not considered;
however, we will see that in the presence of the constant
magnetic field, they should not be discounted.
Chiral anomaly and interactions—To study the chiral

anomaly in the presence of interactions, we proceed using a
generalization of Fujikawa’s path integral method [4,5].
The path integral is

I ¼
Z

D½ψ̄ψaμ� exp i
�Z

d4xψ̄iDψ þ 1

2
aμaμ

�
; ð6Þ

where we have introduced the Hubbard-Stratonovich field
aμðxÞ which has been included in the generalized Dirac
operator asDμ ¼ ∂μ − ieAμ − iλμνaν, andwhose equationof
motion reads aμ ¼ −λνμjν. Integration over the auxiliary aμ
field gives the original action S ¼ S0 þ Sint back.
We now perform an infinitesimal chiral transformation
ψ → eiθðxÞγ5ψ ; ψ̄ → ψ̄eiθðxÞγ5 , which results in a shift of
the action,

S → Sþ
Z

d4xθðxÞ½∂μj
μ
5 −A5ðxÞ�; ð7Þ

where jμ5ðxÞ ¼ ψ̄ðxÞγμγ5ψðxÞ is the chiral current. The first
term in thebrackets arises from the classical shift of the action
itself, whereas the second is the anomalous term which is a
result of the noninvariance of the measure. It takes the
standard form A5ðxÞ ¼ 2Tr½θðxÞγ5�, or more explicitly,

A5ðxÞ ¼ 2θðxÞ
X
n

φ†
nðxÞγ5φnðxÞ; ð8Þ

where φnðxÞ are some orthonormal basis of wave functions
used to expand theGrassmannvariablesψðxÞ ¼ P

cnφnðxÞ.
In the absence of interactions, the natural choice is to take
these to be the eigenfunctions of D0 ¼ =∂ − ie=A and regu-
larize this divergent sum using the heat kernel methodP

n → limM→0

P
n e

−D2
0
=M. Such a choice of basis has the

crucial benefit of formally diagonalizing the action. This
results in the familiar anomalous term A5ðxÞ ¼
θðxÞðe2=16π2ÞFμνFρσϵ

μνρσ with Fμν ¼ ∂μAν − ∂νAμ, and
ϵμνρσ is the Levi-Civita symbol. The chiral anomaly Eq. (1)
then follows. Note that owing to the fact that fγ5; D0g ¼ 0, it
is evident from Eq. (8) that the anomalous term is generated
solely by the zero modes of the Dirac operator.
In thepresenceof interactions,we regularize the sumusing

the generalized Dirac operator, including the Hubbard-
Stratonovich fieldD ¼ γμð∂μ − ieAμ − iλμνaνÞ. (For similar
approaches, see Refs. [33,34].) Following the same pro-
cedure, we find A5ðxÞ ¼ θðxÞð1=16π2ÞF μνF ρσϵ

μνρσ where
F μν ¼ ∂μðeAν þ λναaαÞ − ∂νðeAμ þ λμβaβÞ and after inte-
grating over aμ, we find
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∂μj
μ
5 ¼

e2

16π2
FμνFρσϵ

μνρσ −
e
2π2

ϵμνρσλ2σα∂μAν∂ρjα

þ 1

4π2
ϵμνρσλ2ναλ

2
σβ∂μjα∂ρjβ: ð9Þ

We see that there are terms depending only on the electro-
magnetic field, only on the presence of interactions, and a
mixed term requiring the presence of both. After defining

Ẽi ¼ Ei −
1

e
½λ2iβ∂0 − λ20β∂i�jβ; ð10Þ

B̃i ¼ Bi −
1

2e
ϵijk½λ2jβ∂k − λ2kβ∂j�jβ; ð11Þ

Eq. (3) is obtained.
We could view this as a screening by the interactions of

the electric and magnetic fields which are responsible for
the nonconservation of the chiral charge. This can be seen
more clearly by allowing the electromagnetic fields to be
dynamical and, for simplicity, considering λ2μν ¼ λ2ημ0ην0,
i.e., density-density interactions. Upon treating the electro-
magnetic field in a semiclassical fashion through
ejν ¼ ∂μFνμ, we find that Ẽ ¼ E − ðλ2=e2Þ∇ð∇ ·EÞ and
B̃ ¼ B. Therefore, the anomalous chiral symmetry break-
ing is generated not only by the background fields but also
by the fluctuations induced by the interacting matter.
Dimensional reduction to a Luttinger liquid.—The chiral

anomaly, in the free case, can be straightforwardly under-
stood through dimensional reduction of the (3þ 1)-dimen-
sional system to the (1þ 1)-dimensional lowest Landau
level (LLL) [14]. This is achieved when the magnetic and
electric fields are parallel to each other. We show now that
one can also arrive at Eq. (3) using dimensional reduction
provided that the LLL is described by a Luttinger liquid.
We do this by comparing Eq. (9) evaluated for E ¼ Ezẑ to
the anomalous relation derived from an N-component
Luttinger liquid. Agreement is then found after identifying
N with the LLL degeneracy.
When the electromagnetic fields point only along ẑ, our

anomalous relation then reduces to

∂μj
μ
5 ¼

e2

8π2
FμνFρσϵ

μνρσ −
eBz

2π2
λ2σαϵ

12ρσ∂ρjα: ð12Þ

Assuming that the interacting system still forms Landau
levels, the zero modes which are responsible for the
anomaly are present only on the LLL. As in the free case,
the magnetic field achieves a dimensional reduction from
the (3þ 1)-dimensional theory to the LLL which is
effectively (1þ 1) dimensional. Within the LLL, the
following identity is valid ϵ12ρσγσ ¼ γ5γ

ρ, and after some
rearranging, we arrive at

∂μj
μ
5 ¼

1

1þ n0λ23=π
e2

2π2
EzBz −

n0ðλ20 − λ23Þ=π
1þ n0λ23=π

∂3j35; ð13Þ

where n0 ¼ ðeBz=2πÞ. Here we have also specialized to the
case where the interaction tensor is diagonal. In deriving
this equation, we have assumed that Landau levels are
formed in the interacting system, or more precisely, that
there is a spin polarized LLL on which the anomaly is
generated. We have made no assumptions on the nature of
Landau levels or how they arise, only that they exist, which
seems a physically reasonable proposition, especially in the
limit of large background field. In the opposite limit of zero
background field, Eq. (13) reduces to the noninteracting
result.
The second term in Eq. (13) is similar to Eq. (2), while

the modification of the first has been discovered before in
early studies of interacting (1þ 1)-dimensional fermions
[35,36]. To understand their appearance better, we intro-
duce the following action consisting of N coupled (1þ 1)-
dimensional bosonic fields:

S ¼
XN
j¼1

Z
d2x
2π

�
½∂tϕj�2 þ ½∂xϕj�2 − e½ϵmnAm∂n�ϕj

þ
X
j≤k

λ20
π
½∂xϕj�½∂xϕk� þ

λ23
π
½∂tϕj�½∂tϕk�

�
; ð14Þ

with ϵmn the 2D Levi-Civita symbol. This is equivalent,
through bosonization, to a system of N flavors of interact-

ing chiral fermions χ†�;j ¼
ffiffiffiffiffi
ρ0

p
ei½�ϕj−

R
t dt∂xϕj�, where ρ0 is

the background density [12,13]. The bosons are related to
the fermionic charge and chiral charge density viaP

σ¼� ∶ χ†σ;jχσ;j ≔ −∂xϕj=π and
P

σ¼� σ∶ χ†σ;jχσ;j ≔
∂tϕj=π with ∶∶ indicating normal ordering.
The model is flavor symmetric, and accordingly, both the

interactions and the gauge field affect only the symmetric
combination, ϕS ¼ ð1= ffiffiffiffi

N
p ÞPj ϕj. After a canonical

transformation and retaining only the symmetric terms,
we arrive at the following action:

SS ¼
Z

d2x
2π

fð1þ λ20N=πÞ½∂xϕS�2 þ ð1þ λ23N=πÞ½∂tϕS�2

− 2
ffiffiffiffi
N

p
eA0∂xϕS þ 2

ffiffiffiffi
N

p
eA3∂tϕSg: ð15Þ

Note that here the gauge field couples to the fermionic
density rather than through minimal coupling with the
symmetric boson, an important distinction which we com-
ment on further below. The chiral anomaly is now manifest
in the Euler-Lagrange equation for ϕS. Calculating this, we
find agreement with Eq. (13) provided one identifies
the number of flavors with the Landau level degeneracy
N ¼ n0 ¼ eBz=2π as well as j05 ¼

P ∂tϕj=π and
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j35 ¼
P ∂xϕj=π, which follows from the properties of γμ in

(1þ 1) dimensions.
Our path integral calculation is therefore consistent with

a description of the LLL as a Luttinger liquid. A Luttinger
liquid approach has also been adopted in Ref. [37] to
investigate the effect of disorder which we shall not
consider here. The Luttinger liquid consists of a pair of

interacting chiral fermions χ†�;S ¼
ffiffiffiffiffi
ρ0

p
ei½�ϕS−

R
t dt∂xϕS�

formed from the symmetric boson which couple to the
gauge field and the decoupled nonsymmetric fields which
play no role. The excitations of the LLL are still chiral but
are distinct from these bare fermions and are created by

Ψ†
�¼

ffiffiffiffiffi
ρ0

p
ei½�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2

0
N=π

p
ϕS−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þλ2

3
N=π

p R
tdt∂xϕS�, which coincide

with χ†�;S only when interactions are absent. In general,
these excitations carry different electric and chiral charges
from χ†�;s which can be seen through the coefficients of ϕS

and
R
t dt∂xϕS in the exponential. Had our gauge field

coupled to these instead, then we would find that the chiral
anomaly equation was unmodified. A similar situation also
arises when comparing conductances in one-dimensional
systems [38].
As mentioned in the Introduction, the chiral anomaly is

related to Laughlin’s argument for quantized Hall conduct-
ance [15]. Therein, one can argue that the invariance of the
Hall conductance to local interactions implies invariance of
the chiral anomaly for the edge modes of Laughlin’s
cylinder and vice versa. We remark that our results are
not in contradiction to this, as our (1þ 1)-dimensional
chiral modes are not spatially separated as they are in
Laughlin’s argument. In order to see similar interaction
effects to ours, one would need to include nonlocal
interactions between the edges.
Consequences for Weyl semimetals.—We now turn our

attention to the consequences of Eq. (3) for interacting
condensed matter systems, in particular, Weyl semimetals.
These are a recently discovered type of gapless topological
matter possessing a number of distinctive features which
arise due to the chiral anomaly including a large negative
magnetoresistance [14,39–41] and an anomalous Hall
response [34,42]. The low energy description of such
systems is given by S ¼ S0 þ Sb þ Sint with Sb ¼R
d4xbμj

μ
5, where bμ separates the Weyl nodes in momen-

tum and energy space. The effect of this term is most
conveniently seen by performing a chiral rotation ψ →
eibμx

μγ5ψ ; ψ̄ → ψ̄eibμx
μγ5 which removes Sb at the cost of

generating a Chern-Simons term SCS due to the chiral
anomaly. In terms of the Hubbard-Stratonovich field, this is

SCS ¼
Z

d4x
4π2

ϵνμρσbμ½eAν þ λναaα�∂ρ½eAσ þ λσβaβ�: ð16Þ

Then, following Ref. [34] we vary Sþ SCS with respect to
A1 to obtain the anomalous Hall current. Specializing to the

case bμ ¼ bzδ3μ, λμν ¼ λημν and after integrating over aμ, we
find jx ¼ ðebz=2π2ÞẼy, or more explicitly,

jx ¼ ebz
2π2

Ey −
λ2bz
2π2

½∂tjy − ∂yρ�; ð17Þ

with Ey being the electric field along ŷ and ρðxÞ ¼ j0ðxÞ.
The first term here gives the quantum anomalous Hall
current, while the interaction-dependent contribution van-
ishes in equilibrium. Thus, the interactions do not affect the
equilibrium Hall current; however, they may contribute to
the nonequilibrium or inhomogeneous response.
Combining Eq. (17) with the corresponding expression
for jy and switching to Fourier space, we obtain the
homogeneous finite frequency Hall conductivity expected
from SCS,

σxyðωÞ ¼
�
1þ

�
λ2bz
2π2

ω

�
2
�−1 e2bz

2π2
: ð18Þ

The effect of interactions can also be seen in the equilibrium
density response to a change in the magnetic field, Bz →
Bz þ δBz. In the absence of any fields along the transverse
components, our anomalous relation reduces to Eq. (13),
and upon performing the chiral rotation, we obtain
SCS¼f½e2�=½1þλ2ðeBz=2π2Þ�g

R ðd4x=4π2Þϵν3ρσbzAν∂ρAσ.
Varying this with respect to A0 and subtracting the back-
ground density, we obtain the leading order density response,

δj0 ¼ 1

1þ λ2 eBz

2π2

ebz
2π2

δBz: ð19Þ

Because of the dimensional reduction, the density is equiv-
alent to a chiral current in the longitudinal direction
hj0i ¼ hj35i, and so Eq. (19) can be viewed as the generation
of a chiral current in response to a change in the magnetic
field which is known as the chiral separation effect (CSE)
[43–45].
Photon action.—As was pointed out in Ref. [42], the

Chern-Simons term obtained via chiral transformation
requires some subtle interpretation if it is to describe a
Weyl semimetal. The appropriate understanding comes
from integrating out the fermionic degrees of freedom to
determine the linear response. We adopt this approach to
confirm the equilibrium response of the system expected
from SCS. To Oðe2Þ, after integrating out the fermions,

S ¼ −e
Z

d3qdω
ð2πÞ4 Tr½Gλðq;ωÞγμ�Ã�

μðq;ωÞ

−
e2

2

Z
d3qdω
ð2πÞ4 Ãμðq;ωÞΠμν

λ ðq;ωÞÃ�
νðq;ωÞ; ð20Þ

where Gλðq;ωÞ is the single-particle interacting
Green’s function in the presence of Bz and bz and
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Πμν
λ ðq;ωÞ¼ Rf½d3q0dω0�=½ð2πÞ4�gTr½γμGλðq0;ω0ÞγνGλðq0−

q;ω0−ωÞ�. The anomalous terms we are interested in can
then be isolated by considering the leading q, ω → 0 terms
which provide the static homogeneous response.
The evaluation ofGλðq;ωÞ cannot be carried out exactly;

however, we are only interested in computing the density
response and the form of Eq. (19) suggestive of a RPA.
Indeed, the low energy response in the longitudinal
directions is determined solely by the LLL whose current
and density responses are completely captured by a RPA
summation owing to its reduced dimensionality. Using the
noninteracting Green’s function in the Landau level basis
derived in Ref. [30], we obtain

lim
q→0
ω→0

Πμν
RPAðq;ωÞ¼

�
1

1þλ2 eBz

2π2

PkþP⊥
�
μ

ρ

lim
q→0
ω→0

Πρν
0 ðq;ωÞ; ð21Þ

where for λ2μν ¼ λ2ημν, Pk ¼ ð1 − γ3Þ=2 projects onto the
longitudinal components, while P⊥ ¼ 1 − Pk projects onto
the transverse components. When λ2μν ¼ λ2η0μη0ν, we use
instead Pk ¼ ½ð1 − γ3Þ=2�½ð1 − γ5Þ=2� which projects only
onto the temporal components. We see here a screening of
the density response due to the interactions while the
transverse components are unaffected. The equilibrium
Hall response is therefore the same as the free case, in
agreement with Eq. (17). The linear density response is
then found after computing limq→0 limω→0Π02

0 ðq;ωÞ=iqx.
Surprisingly, however, this vanishes. Thus, the anomalous
density response comes from the first term in Eq. (20) and
can be attributed to the change in degeneracy of the LLL.
The same RPA screening occurs for this term also, and we
find agreement with Eq. (19).
In the absence of Bz, the density response depends on all

filled bands [42]. When it is present, however, this is not the
case and the density response is determined only by the
LLL. Therefore, we can understand this by returning to our
description of the LLL given in Eq. (15). The Sb term can
be accounted for by the inclusion of a chemical potential
term SS;b ¼ −

R
d2x

ffiffiffiffi
N

p
bz∂xϕS=π. Recalling that N ¼

eBz=2π is identified with the degeneracy of the LLL,
we compute the density response to N → N þ δN and
once again find agreement with Eq. (19). Furthermore, the
modification of the anomalous terms is natural from this
viewpoint, as we can identify ð1þ λ2eBz=2π2Þ−1 as being
the charge susceptibility or the chiral charge stiffness of the
LLL [12,13]. This is in agreement with Eq. (19) being
viewed either as the density response or the CSE.
Conclusions.—In this Letter, we have explored the

interplay between anomalous chiral symmetry breaking
via electromagnetic fields and interactions. We have shown,
using Fujikawa’s path integral method, that the chiral
charge continuity equation contains new interaction-
dependent terms which can be absorbed into effective
electromagnetic fields which are responsible for the

breaking of chiral symmetry. Furthermore, this result has
been shown to be consistent with the lowest Landau level
being a Luttinger liquid. We have investigated the conse-
quences of this result for interacting Weyl semimetals and
have found that interaction effects will be present in the
nonequilibriumHall response as well as the density response
to a change in the magnetic field. These results have then
been reproduced via direct perturbative calculation.
Recently, it was discovered that the circular photo-

galvanic effect [46], originally thought to be quantized
as a result of the chiral anomaly, is actually renormalized
due to the presence of interactions [47]. It would be
desirable to understand our results in the context of this
observable also. Lastly, we note that other anomalous Ward
identities, including the gravitational anomaly, can be
derived using Fujikawa’s method and our analysis can
likewise be applied in those situations with the possibility
of additional observable interaction effects [48].
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