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Vortices play a leading role in many fascinating quantum phenomena. Here we generate a large number
of vortices by thermally quenching a fermionic superfluid of 6Li atoms in an oblate optical trap and study
their annihilation dynamics and spatial distribution. Over a wide interaction range from the attractive to the
repulsive side across the Feshbach resonance, these quasi-two-dimensional vortices are observed to follow
algebraic scaling laws both in time and space, having exponents consistent with the two-dimensional
universality. We further simulate the classical XY model on the square lattice by a Glauber dynamics and
find good agreement between the numerical and experimental behaviors. Our work provides a direct
demonstration of the universal 2D vortex dynamics.

DOI: 10.1103/PhysRevLett.126.185302

Quantized vortices, topological defects in a superfluid,
lie at the cornerstone of describing collective phenomena
and phase transitions [1,2]. In three dimensions (3D), as the
temperature T is raised, the excited vortex lines or loops
proliferate and transform the superfluid into the normal
state through a second-order thermodynamic phase tran-
sition. In 2D, the vortices and antivortices in a superfluid
form tight pairs, and as T rises, they break up at the
celebrated Berezinskii-Kosterlitz-Thouless (BKT) phase
transition [3–5].
With a high degree of manipulations and tunabilities,

ultracold atomic gases provide an ideal platform for studying
vortices. Vortex lattices have been generated and
their equilibrium properties have been intensively studied
[6–13]. The spontaneous formation of vortices in a Bose
condensation has been generated via the Kibble-Zurek
mechanism [14,15]. These vortices can display rich dynamics,
including nonexponential decay [16], transport and recon-
nection of vortex filaments [15,17], Kolmogorov energy
cascade [18,19], giant vortex clustering [20,21], and so on.
Spontaneous vortices have also been successfully gen-

erated in fermionic superfluid by thermally quenching
across the superfluid transition [22,23], and the dependence
of the number of generated vortices on the quench rate is
shown to be governed by the universal Kibble-Zurek

mechanism. An important question is then how these
vortices annihilate afterward. A quantum vortex can dis-
appear by drifting out of the superfluid or colliding with
another vortex with opposite polarity. The former is a one-
body process, giving the traditional exponential decay of
vortex number [9,10]. It was argued [24,25] that, depend-
ing on the presence or absence of dissipation, the vortex-
pair annihilation can be a two- or four-body process. The
corresponding decaying dynamics is a power law with
exponent −1 or −1=3, respectively.
From universality, the dynamics of vortices can be

studied within the Ginzburg-Landau (GL) theory, a phe-
nomenological theory of superfluidity. In 2D, the dynamics
of vortices following a rapid thermal quench were numeri-
cally investigated [26] by simulating the classical XY spin
model, a simplified lattice model for the GL theory. The
number of vortices was observed to decay algebraically as
∝ ½t= logðtÞ�−1, where t is the time after the quench. The
logarithmic correction log t, arising from the effective
Coulomb interaction (∝ 1=r) between two vortices of
distance r, was successfully identified. In addition, the
average distance ξðtÞ between neighboring vortices was
found to increase approximately as t1=2 and the vortex-
antivortex spatial correlation function obeys another power
law CðrÞ ∝ r−3 for r ≫ ξðtÞ.
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In this Letter, we study the vortex-annihilation dynamics
following a rapid thermal quench of a strongly interacting
Fermi gas of 6Li atoms in an oblate optical trap through
the superfluid phase transition. Because of the oblate
trap geometry, the vortices have strong tendency to be
aligned along the tightly confined direction and are thus
quasi-two-dimensional (quasi-2D), as confirmed by high-
contrast imaging of vortex cores. The configuration after
the thermal quench consists of an equal number of
randomly distributed vortices and antivortices. At unitarity,
as well as at the Bose-Einstein condensates (BEC) and the
Bardeen-Cooper-Schrieffer (BCS) side, we observe that the
number density of quasi-2D vortices algebraically decays
approximately as t−1 with t the holding time. Apart from
the logarithmic correction, this is consistent with the
annihilation dynamics of vortices in the 2D XY model
[26]. Further, we find that the probability distribution of the
distance r between neighboring vortices obeys another
power law r−3 and the average distance increases as t1=2.
Following Ref. [26], we simulate the XY model on the
square lattice, and observe that the real-time dynamics in
experiment and the dynamics in simulation exhibit very
similar behaviors. This suggests that the coarse-grained GL
theory can provide a precise description of the dynamics of
quasi-2D vortices in our oblate system.
The main experimental setup and method to prepare 6Li

superfluid have been described in our previous work [13,22].
A balanced spin mixture of 6Li with 1 × 107 atoms is first
loaded into an elliptical optical trap [wavelength 1064 nm,
1=e2 radius 200 and 48 μm (gravity direction)] at 832.18 G.
Then, the magnetic field is adiabatically ramped to the
final value (or held at 832.18 G), and the cloud is
evaporatively cooled by ramping-down the laser power.
At unitarity, the final trap frequencies are ðωx;ωy;ωzÞ ¼
2π × ð56.2; 218.4; 16.7Þ Hz, where ωz is provided by the
residual magnetic curvature. Using a moderate ramp time of
400 ms, the cloud temperature can be effectively quenched
through the superfluid phase transition, and thus plenty of
vortices and antivortices are spontaneously generated.
After trap ramping, the system is held until the quasi-

condensate number is saturated. At this point, the sponta-
neous vortices are found to be clearly visible [22], and the
initial time (t ¼ 0) is defined for the study of vortex
dynamics. Afterward, the optical trap is switched off and
the magnetic field is jumped to 720 G for a series of time t,
and the cloud is probed after 10 ms expansion with
absorption imaging. By fitting the measured density profile
to a Gaussian plus Thomas-Fermi distribution, we obtain an
approximate estimate of the cloud temperature to be T ≈
0.09TF [27]. Typical results for the spontaneous vortices
probed at t ¼ 0 are shown in the first column of Fig. 1. It is
found that all these high-contrast vortex cores are randomly
distributed in the BCS-BEC crossover.
Annihilation dynamics.—The randomly distributed

vortices and antivortices imply that the system is in an

out-of-equilibrium state. It will approach equilibrium and
establish the global superfluid phase coherence through a
coarsening process, which is mainly due to the pairing and
annihilation of vortex and antivortex. We carry out a series
of measurements on the evolution of vortex density ρv at
the BEC (809 G), unitarity (832 G), and BCS (861 G)
regimes. Figure 1 shows typical images of vortices probed
at 0, 0.2, and 1.1 s, respectively. A striking feature is that
most of the vortices disappear after 1 s, implying the short
lifetime of these spontaneous vortices. Figure 2 gives the
statistical results of the time-dependent vortex densities. It
is seen that the experimental data, while clearly deviating
from an exponential form, can be well described by an
algebraic scaling as

ρv ¼ ½a=ðtþ ΔtÞ�ζ; ð1Þ

where an offset Δt is to account for short-time behavior.
The fits give the dynamic exponent ζ ¼ 0.93� 0.06,
0.93� 0.15, and 0.94� 0.17, respectively for 809, 832,
and 861 G, which agree well with each other within error
bars. The decay of the vortex number, at the unitarity, the
BEC, and the BCS side, all displays power-law decaying
behaviors and further shares the same exponent, strongly
indicating some universal underlying mechanism. In addi-
tion, we find that this power-law scaling behavior is
independent of the thermal ramping rate and the final trap
frequencies. In other words, the universal vortex dynamics
does not depend on the final superfluid temperature, as long
as it is below the superfluid phase transition.
Our oblate fermionic system is essentially 3D, since the

Fermi energy is much higher than ℏωy. Thus, unlike in the
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FIG. 1. Exemplary pictures of spontaneous vortices after
different holding times in the BEC-BCS crossover. The experi-
ments are performed at 809 G (a)–(c), 832 G (d)–(f), and 861 G
(g)–(i), respectively, with a 400 ms ramp time. The initial time
t ¼ 0 is defined as the quasi-condensate number reaches satu-
ration. Each picture has a size of 440 × 350 μm2.
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real 2D plane where the condensate is absent, the superfluid
in our system mainly comes from the condensation of
molecules or Cooper pairs. However, due to the oblate trap
geometry, the minimum energy cost to generate a vortex
loop is on the order of 2π × 218 Hz, and is at least 4 times
higher than that for a vortex line along the gravity (y)
direction, giving a much larger probability for the latter. In
our finite system with tens of vortices, most of the vortices
are thus expected to be vertically aligned. This is confirmed
by the high-contrast imaging of vortex cores along the
gravity direction, and also qualitatively by the numerical
simulation of the Gross-Pitaevskii equation [28]. These
vertically aligned vortices likely maintain their quasi-2D
structures during the annihilation process, and, in a coarse-
grained treatment, other mesoscopic details play as irrel-
evant perturbative roles. We thus argue from universality
that the dynamics of these quasi-2D vortices can be
described by the 2D GL theory. Assuming a two-body
process for the vortex annihilation, one can simply write
down a mean-field description as dρv=dt ¼ −κρ2v, with κ a
constant, giving a power-law decay ρvðtÞ ∝ 1=t [29]. A
more advanced treatment would require us to consider the
spatial structure of vortices and the effective Coulomb
interaction, which is inversely proportional to the distance r
between vortices as ∝ 1=r. From the numerical integration

of the field-theoretical equation, it was obtained that a
logarithmic correction would arise and the dynamics is
modified as ρvðtÞ ∝ ðt= log tÞ−1 [26,29,30].
We follow Ref. [26] and consider a single-site Glauber

dynamics [38,39] by simulating the classical square-lattice
XY model [28], of which the BKT phase transition is
known to occur at temperature kBTBKT ¼ 0.89 (kB is the
Boltzmann constant) [26]. A random spin configuration is
prepared and instantly quenched to kBT ¼ 0.2, where the
system is in a deep superfluid phase. The Glauber dynamics
follows by choosing a random spin and rotating it by a
randomly chosen phase according to the Metropolis rule.
Figure 3(a) shows snapshots of vortex configurations for a
system size of L ¼ 200 at various times after the thermal
quench. Here the “time” unit corresponds to one averaged
updating step per spin. We then measure the temporal
evolution of vortex density ρv over 400 independent runs,
and the results are shown in Fig. 3(b). Finite size effects are
clearly observed, as the vortex densities gradually deviate
the power-law scaling for t ≫ 1. For a large system size of
L ¼ 600, the results are well consistent with the theoretical
prediction ðt= log tÞ−1 [28] for t ≫ 1. For mediate time
t ∈ Oð10Þ, ρv decays approximately as 1=t, which looks
surprisingly similar to the real-time dynamics of the
experiment, as shown in the inset of Fig. 3(b).
The equilibrium behavior at T < TBKT is related to

low-energy phonon or spin-wave excitations and has a
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FIG. 2. Annihilation dynamics of quasi-2D vortices for (a),
809 G, (b), 832 G, and (c), 861 G. The ramp time is 400 ms. The
vertical axis is the number density of vortices ρv, where each
point, with a standard statistical error, is acquired by averaging 30
repetitive measurements. The solid lines are the fitting curves
with power-law function, and Δt represents the time offset, with
Δt ¼ 227� 28 ms for (a), 237� 70 ms for (b), and 246�
80 ms for (c).
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FIG. 3. Glauber dynamics of the 2D XY model from
Monte Carlo simulations. (a) Snapshots of vortex configuration
at various time t after the quench, with red and blue circles being
vortices and antivortices, respectively. The system size is
L ¼ 200. (b) Time dependence of the vortex density ρv after
the quench, with different symbols representing system sizes. The
short-time behavior of decay dynamics (shown in the inset)
displays a power-law decay with an exponent about −1. The
longtime algebraic decay with exponent −0.83 is consistent with
ðt= log tÞ−1 [28].
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T-dependent critical exponent for the order parameter. In
contrast, the universal vortex dynamics, decoupled from the
low-energy excitations, is T independent. This robustness
is well demonstrated by our experimental results for
different ramping rates as well as numerical simulations
at various temperatures.
Spatial distribution.—In 2D, the effective Coulomb

interaction introduces a logarithmically diverging energy
∝ log r for a pair of vortices of distance r, and thus the
vortices are tightly bound below the BKT transition. In the
vortex-annihilation dynamics, the effective interaction
gives rise to a logarithmic correction that is beyond the
mean-field description, which, unfortunately, our experi-
ment fails to identify. However, as shown in Ref. [26], the
vortices can display rich spatial information from the GL
theory. We measure pair correlation functions that ignore
the vortex polarity, since our images cannot tell the
polarity of vortices. We sequentially visit each vortex,
pair it with its nearest-neighboring vortex, and record their
distance r (in this procedure, a vortex might be paired
more than once). For each set of parameters, 300 repetitive
experiments are performed, and the histogram of such
pairing distance r is measured. The results are shown in
Fig. 4(a), where PðrÞdr represents the probability for
distance ðr; rþ drÞ, irrespective of angular dependence.
As expected, the pairing distance has a characteristic value
r0, with PðrÞ dropping rapidly for small r < r0. The
length scale r0 ≈ 30 μm is consistent with the typical size
of vortex cores in Fig. 1, as measured from the density
distribution. An intriguing property is that a flat-tail
distribution occurs for large r, indicating a power-law
decay PðrÞ ∼ r−η for r ≫ r0. Indeed, we find that the data
for r ≥ r0 are well described by a simple ansatz
PðrÞ ¼ a=rη, and the exponent is estimated to be
η ¼ 3.00� 0.30, 3.26� 0.20, and 3.29� 0.18 for 809,
832, and 861 G, respectively. A typical Monte Carlo result
for the 2D XY model is shown in the inset of Fig. 4(a),
displaying similar behavior as the experiment, for which
the fit gives η ¼ 2.92� 0.15.
From the probability distribution PðrÞ, we calculate the

average distance between neighboring vortices ξðtÞ as a
function of holding time t. The approximate scaling
behavior ξ2 ∝ t in Fig. 4(b) provides another piece of
evidence that the annihilation dynamics of quasi-2D
vortices in our oblate system can be described by the
coarse-grained GL theory for 2D superfluidity.
Universality is a fundamental concept in the modern

theory of phase transition and critical phenomena, revealing
common macroscopic properties for seemingly disparate
systems. According to the renormalization group theory,
the universality solely depends on a small number of global
features of the system, including the spatial dimensionality,
the symmetry of the interaction and the order parameter,
etc. In our fermionic superfluid cloud, the constituent
particles are either bosonic molecules or fermionic

Cooper pairs, and the interatomic interactions can be
repulsive, attractive, or resonant. These microscopic
features are very different from the classical spins in the
XY model, which are of unit length, live on lattice sites, and
interact through nearest-neighbor coupling. The meso-
scopic structures in the experimental system are also much
more complex. The ratios of our trap frequencies along the
tightly confined and the other two directions are about 4
and 13. As a consequence, the thermal quench may produce
small closed vortex loops in addition to the vertically vortex
lines; the equilibrium superfluid, established through the
coarsening process of vortex annihilation, corresponds to a
BEC that has long-ranged order, instead of quasi-long-
ranged order in real 2D. Therefore, the observed common
universal dynamical properties of quasi-2D and 2D vortices
in these two systems are surprising, and give a strong and
direct demonstration of the dynamics universality class of
2D vortices.
In conclusion, by studying the dynamics of the quasi-

2D vortices in a strongly interacting fermionic superfluid,
we observe universal power-law scaling behaviors over a
wide interaction range, i.e., at unitarity, the BEC, and the
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FIG. 4. (a) Probability distribution of the vortex distance for
809 G (green triangle), 832 G (blue circle), and 861 G (red
diamond). Each set of data comes from 300 repetitive measure-
ments. The solid lines are the power-law fitting curves. The inset
displays a simulation result for the XY model. (b) Temporal
evolution of average squared distance between neighboring
vortices for 809 G (green triangle), 832 G (blue circle), and
861 G (red diamond). Each set of data comes from 30 repetitive
measurements. The solid lines are the linear fitting curves.
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BCS side, and find agreement between the experimental
critical exponents and the theoretical predictions for
generic 2D vortices. A close resemblance is further
revealed between the experimental measurements and
the numerical simulation of the classical XY model in
2D. According to the GL theory, the coefficient a in the
algebraic decaying, Eq. (1), depends on temperature T and
is proportional to the product ρsðTÞΓðTÞ, where ρs is the
superfluidity stiffness and Γ is the kinetic coefficient.
Therefore, it is possible to extract information for ρs from
the vortex-annihilation dynamics by varying temperature
and interaction range. By having a larger and more oblate
system, one might achieve the challenging goal of
identifying the logarithmic correction, which is an impor-
tant feature in the dynamics of 2D vortices. We mention
that besides the observed dynamical behaviors, the gen-
erated spontaneous vortices exhibit exotic quantum tur-
bulence physics [40]. It is also fascinating and challenging
to explore the crossover from the 3D thermodynamic
phase transition to the 2D topological one by tuning the
trap geometry to be more and more oblate. With a high
stability and controllability, our experiment platform
paves the way for studying these rich quantum phenomena
of spontaneous vortices.
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