
 

Three-Dimensional Dirac Phonons with Inversion Symmetry

Z. J. Chen ,1,2,3 R. Wang ,4 B.W. Xia,2,3 B. B. Zheng ,2 Y. J. Jin,2,3 Yu-Jun Zhao,1,* and H. Xu 2,3,†
1Department of Physics, South China University of Technology, Guangzhou 510640, People’s Republic of China

2Department of Physics and Institute for Quantum Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, People’s Republic of China

3Guangdong Provincial Key Laboratory of Computational Science and Material Design, Southern University of Science
and Technology, Shenzhen 518055, People’s Republic of China

4Institute for Structure and Function and Department of Physics and Center for Quantum Materials
and Devices, Chongqing University, Chongqing 400044, People’s Republic of China

(Received 18 December 2019; revised 23 May 2020; accepted 5 April 2021; published 5 May 2021)

Dirac semimetals associated with bulk Dirac fermions are well known in topological electronic systems.
In sharp contrast, three-dimensional (3D) Dirac phonons in crystalline solids are still unavailable. Here we
perform symmetry arguments and first-principles calculations to systematically investigate 3D Dirac
phonons in all space groups with inversion symmetry. The results show that there are two categories of 3D
Dirac phonons depending on their protection mechanisms and positions in momentum space. The first
category originates from the four-dimensional irreducible representations at the high symmetry points. The
second category arises from the phonon branch inversion, and the symmetry guarantees Dirac points to be
located along the high symmetry lines. Furthermore, we reveal that nonsymmorphic symmetries and the
combination of inversion and time-reversal symmetries play essential roles in the emergence of 3D Dirac
phonons. Our work not only offers a comprehensive understanding of 3D Dirac phonons but also provides
significant guidance for exploring Dirac bosons in both phononic and photonic systems.
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Recently, various topological phases in condensed mat-
ter physics have become the subject of intense studies in
electronic systems. These topological phases are associated
with specific symmetries, leading to unique nontrivial
surface states. For instance, the time-reversal (T ) symmetry
guarantees the helical surface states with a Dirac linear
dispersion in topological insulators [1,2]. Such features
have been identified to be robust against nonmagnetic
perturbations, facilitating potential applications in dissipa-
tionless devices [2]. Subsequently, the concept of band
topology was introduced to semimetals [3], i.e., topological
semimetals, which further extend the classification of
topological matter. So far, different types of topological
semimetals have been theoretically proposed [3–9]. In
particular, three-dimensional (3D) Dirac semimetals, in
which the low-energy excitations around fourfold-degen-
erate Dirac points linearly disperse along all momentum
directions, have attracted much attention, as they are
regarded as 3D analogs of graphene [6–9]. Delightfully,
3D Dirac semimetals have already been experimentally
confirmed in Na3Bi and Cd3As2 [10–13].
In comparison with fermionic electrons, bosonic systems

possess similar but different properties. On the one hand,
bosons do not obey the Pauli exclusion principle. As a result,
their topological features are effective in the whole energy
range. On the other hand, the spinless Bloch functions in
bosonic systems are invariant under an even number of T

operations, i.e., T 2 ¼ 1 [14]. Such unique features may
supply various fascinating properties and potential applica-
tions to the family of topological quantum phases. To date,
research progress in topological bosons has focused mainly
on the artificial photonic [15,16] and phononic [17–20]
crystals. Studies of topological phonons in crystalline solids
are still in their infancy [21–27]. In particular, to our
knowledge, 3D Dirac phonons have not been reported in
the literature. In analogy to 3D Dirac fermions, a 3D Dirac
phonon can be regarded as the overlap of twoWeyl phonons
with opposite chirality, which is protected by a combination
of T and inversion (P) symmetries, i.e., the PT symmetry
[28–30].Around such a phononDirac point, the quasiparticle
excitations exhibit linear dispersion, which can be described
by the massless Dirac equation [31].
In this Letter, we identify that there are 92 space groups

with PT symmetry by screening symmetry conditions. All
these space groups are investigated to search for 3D Dirac
phonons, which can be classified into two categories. The
first category possesses theDirac points at the high symmetry
points (HSPs), and the second category possesses the Dirac
points along the high symmetry lines (HSLs). High-through-
put calculations were performed to search for candidates of
3D Dirac phonons (see the computational methods in the
Supplemental Material [32]). We identify that Si (cI16) and
Nb3Te3As are representative candidates for each category,
respectively.
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To realize 3D Dirac phonons, the fourfold degeneracy of
phonon branches is a prerequisite. As is well known, a
trivial degeneracy is often fragile due to the unavoidable
perturbations [40]. Fortunately, the perturbation term can
be rigorously forbidden in crystalline solids. In other
words, the phonon branch crossings are protected by
specific crystal symmetries, forming nontrivial crossing
points. In principle, the fourfold degeneracy can be
achieved in either of two forms: (1) the essential degen-
eracy at the HSPs or (2) the accidental degeneracy along the
HSLs. Based on the symmetry analysis and irreducible
representations (IRs) in 230 space groups [41], we respec-
tively investigate these two categories of 3D Dirac pho-
nons, and their symmetry constraints are completely
identified.
To begin with, we focus on the first category of 3D Dirac

phonons at the HSPs. Through checking IRs at the HSPs of
92 centrosymmetric space groups, we reveal 21 HSPs
(within 17 space groups) that can host 3D Dirac phonons,
as listed in Table S1 of the Supplemental Material [32]. It is
worth noting that the cases of the presence of Dirac nodal
lines or quadratic dispersion have been excluded (see
Table S2 in the Supplemental Material [32]). Further
analysis shows that 13 HSPs (within 11 space groups)
possess only four-dimensional (4D) IRs (see Table I), and
the minimal symmetry condition for the presence of 4D IRs
can be described by

RαðβÞ2 ¼ 1; fRα; Rβg ¼ 0; fRαðβÞ;PT g ¼ 0; ð1Þ

where RαðβÞ represent the nonsymmorphic symmetry oper-
ators. Besides these 13 HSPs listed in Table I, another 8
HSPs within 7 space groups given in the bottom panel of
Table S1 cannot be explained by Eq. (1), and the corre-
sponding analysis is provided in the Supplemental
Material [32].
As a typical example, we illustrate the space group

Ibca (No. 73), in which 4D IR emerges only at W with
the wave vector kW ¼ ð1=2; 1=2; 1=2Þ. In this case, Rα ¼
S2x and Rβ ¼ S2y are two screw rotations involving

half lattice translations, which lead to the coordinate
transformation as

S2x∶ðx; y; zÞ → ðx;−y;−zþ 1=2Þ;
S2y∶ðx; y; zÞ → ð−xþ 1=2; y;−zÞ: ð2Þ

The symmetry transformation leads to

S2xS2y ¼ TzS2yS2x; ð3Þ

where Tz is a unit lattice translation along the z direction.
At the W point, this translational operation brings a phase
factor on Bloch states as eikW ·Tz ¼ −1, leading to the
anticommutation relation fS2x; S2yg ¼ 0. The other rela-
tions in Eq. (1) can be confirmed by employing the same
argument.
To determine the dimension of IRs, we start with two

groups of Bloch states

A∶fjφi;PT S2yjφig; B∶fS2yjφi;PT jφig; ð4Þ

where jφi can be chosen as an eigenstate of S2x with
S2xjφi ¼ �jφi, since S2x2 ¼ 1. Then the states in different
groups are assigned with opposite S2x eigenvalues accord-
ing to the anticommutation relations in Eq. (1). This
suggests that any state in one group cannot be a linear
combination of the states in the other group. Then we focus
on the states in the same group, e.g., the group A. We
assume that jφi and PT S2yjφi are linearly dependent, i.e.,
jφi ¼ μPT S2yjφi, where μ is a complex constant. The
anticommutation relation fS2x;PT g ¼ 0 gives

jφi ¼ μPT S2y · μPT S2yjφi ¼ −jμj2jφi; ð5Þ

which means that the solution of μ does not exist, and thus
jφi and PT S2yjφi must be linearly independent. A similar
argument is also suitable for the group B. As a result, we
can conclude that the four states in Eq. (4) are linearly
independent and have the same eigenvalue of Ĥ. These four
states can always be constructed into four degenerate
complete orthonormal sets of Ĥ, and thus the IRs are 4D.
Because the nonsymmorphic symmetries may induce a

higher degeneracy (i.e., bands-sticking-together effect)
[42], the 4D IRs of HSPs are guaranteed to locate at the
boundary of the first Brillouin zone (BZ). In addition, due
to the T symmetry, the 4D IRs are the direct sum of a pair
of conjugated IRs. For all the HSPs in Table I, the
dispersion of phonon branches is linear, forming Dirac
phonons. In Fig. 1(a), a representative dispersion of Dirac
phonons is plotted to make an intuitive description. Note
that the electronic bands of two spin channels degenerate in
pairs under the constraint of the PT symmetry in Dirac
semimetals. Nevertheless, spinless phonon branches can
individually arise along a general k path, resulting in

TABLE I. Space groups and corresponding high symmetry
points (HSPs) that possess Dirac phonons, as well as the key
operators that guarantee 4D IRs under the restriction of T .

Space group (HSP) RαðβÞ

73ðWÞ and 142=206=230ðPÞ fC2xj00 1
2
g and fC2yj 12 00g

52ðSÞ fC2xj0 1
2
1
2
g and fC2zj 12 00g

54ðUÞ and 54ðRÞ fC2yj00 1
2
g and fC2zj 12 00g

56(U) fC2yj0 1
2
1
2
g and fC2zj 12 12 0g

60ðTÞ fC2xj 12 12 0g and fC2yj00 1
2
g

56ðTÞ and 130=138ðRÞ fC2xj 12 0 1
2
g and fC2zj 12 12 0g

228ðWÞ fC2xj0 1
4
1
4
g and fC2yz̄j 12 12 12g
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different behaviors between Dirac phonons and Dirac
fermions.
Next, we turn to the second category of Dirac phonons

along the HSLs. The Dirac phonons in this category are
induced by band inversion. In general, there should be two
sets of twofold-degenerate phonon branches crossing each
other and completely separated away from the crossing
point. If these two sets of phonon branches are assigned to
different two-dimensional (2D) IRs, the gapless point is
symmetry protected and thus cannot be gapped by local
perturbations. Following this rule, we search through all the
space groups with inversion symmetry to look for HSLs
that possess two or more sets of 2D IRs. The results show
that most cases lead to nodal-line phonons in high
symmetry planes rather than Dirac phonons along the HSL.
To elaborate on this, we consider the evolution of two

sets of 2D IRs Γ2
1 and Γ2

2, which form a symmetry-protected
crossing point along the HSL X-Y (see Fig. 1). In addition,
we choose an arbitrary path A-B parallel to X-Y. These two
selected paths lie in a high symmetry plane k1 − k2 [see
Fig. 1(b)]. When A-B is infinitely close to X-Y, the phonon
dispersion along A-B can be regarded as slight deforma-
tions of that along X-Y. As a result, the 2D IRs Γ2

1 and Γ2
2

along X-Y will split into two one-dimensional (1D) IRs
along A-B, i.e., Γ1

1 and Γ1
2. According to the compatibility

relations, there will be two cases of splitting, either
Γ2
1 ¼ Γ1

1 ⊕ Γ1
1, Γ2

2 ¼ Γ1
2 ⊕ Γ1

2 or Γ2
1 ¼ Γ1

1 ⊕ Γ1
2, Γ2

2 ¼
Γ1
1 ⊕ Γ1

2. We plot these two cases in Fig. 1(c). In the left
panel of Fig. 1(c), the crossings along A-B will be
preserved. This can happen if the k1 − k2 plane is a
reflection-invariant plane and the crossings along A-B

are protected by the mirror symmetry. Then, the continuous
deformation of A-B will generate two nodal lines in the
plane k1 − k2 [the black dashed lines in Fig. 1(b)] and the
3D Dirac phonons are not allowed. In the right panel of
Fig. 1(c), two branches with the same IR are forbidden
from forming a crossing. In this case, the 3D Dirac phonons
can be present solely along X-Y. In Table S3 of the
Supplemental Material [32], we tabulate all the centrosym-
metric space groups and HSLs with two or more sets of 2D
IRs as well as their compatibility relations with the high
symmetry planes. We can see that the 3D Dirac phonons
along the HSLs are quite limited. The space groups that can
host 3D Dirac phonons along the HSLs are summarized in
Table II.
Based on the above symmetry analysis, we carry out

high-throughput screening of phonon-branch topology to
search for these two categories of candidates with 3D Dirac
phonons. For Dirac points at the HSPs, the existence of
independent 4D IRs implies that any material belonging to
the proposed space groups could hold such 3D Dirac
phonons. In comparison with the case of Dirac points at
the HSPs, the search for 3D Dirac phonons along the HSLs
is more difficult because there are only a few space groups
that satisfy the symmetry conditions. In addition, it is worth
noting that the 3D Dirac phonons may usually be hidden in
rambling branches, and thus their topological features are
invisible. Fortunately, we find several candidates with
visible Dirac phonons. Here we take Si (cI16) and
Nb3Te3As as examples to show 3D Dirac phonons at
the HSPs and along the HSLs, respectively. Both materials
have been successfully synthesized [43,44], indicating the
feasibility in experiments. Other candidates with 3D Dirac
phonons are provided in the Supplemental Material [32].
Si (cI16) is a silicon allotrope with space group Ia-3

(No. 206). It crystallizes in a body-centered cubic structure
with 16 atoms in its primitive unit cell, as shown in
Fig. 2(a). The first BZ along with the projected (110)
surface BZ are given in Fig. 2(b). We first elucidate that
there are 4D IRs at point P that is invariant under the opera-
tions of C3;111 and S2α ¼ fC2αjtβgðα ¼ x; y; z; β ¼ z; x; yÞ,
where C3;111 is the threefold rotation along the [111]
direction and S2α are the twofold screw rotations along
the α direction with half lattice translations tβ along the β
direction. The little group of P satisfies the minimal

FIG. 1. (a) 3D representation of the Dirac phonon. (b) Sketch of
the nodal line induced by accidental degeneracy along the HSL.
Red and blue lines indicate Γ1

1 and Γ1
2, which are 1D IRs in the

high symmetry plane. Purple and green lines indicate Γ2
1 and Γ2

2,
which are 2D IRs along the HSL. (c) Two cases of phonon branch
splitting along a close path A-B when a symmetry-protected
crossing emerges along X-Y.

TABLE II. Space groups that host Dirac phonons along the
HSLs. The superscripts indicate the dimension of IRs. The
symbol “⊕” represents the direct sum of two sets of IRs
combined by the T symmetry.

Space group (HSL) Irreducible representations

62ðP=EÞ and 55=56=58=59ðQÞ Γ1
1 ⊕ Γ1

2;Γ1
3 ⊕ Γ1

4

175=176ðΔÞ Γ1
3 ⊕ Γ1

5;Γ1
4 ⊕ Γ1

6

191 − 194ðΔÞ Γ2
5;Γ2

6
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symmetry condition of Dirac points at the HSPs in
Eq. (1) (see the details in the Supplemental Material
[32]). Ignoring the T symmetry, we can use the eigenvalues
of C3;111 to represent the IRs as P1: diagð1; ei2π=3Þ, P2:
diagðei2π=3; e−i2π=3Þ, and P3: diagðe−i2π=3; 1Þ. In a phonon
system, the complex IRs always appear in pairs, as T is
always conserved. As a consequence, the IRs at P are given
as P0 ¼ P1 ⊕ P3 and P00 ¼ P2 ⊕ P2, which are both 4D.
The phonon spectrum of Si (cI16) along the high

symmetry path is shown in Fig. 2(c). As expected, fourfold
degeneracies are present at P for all branch nodes. In
particular, the linear excitations of Dirac phonons near the
frequency of 8 THz are well separated with other phonon
branches, facilitating their detection in experiments. To
intuitively show the topological features of 3D Dirac
phonons in Si (cI16), the enlarged views around the
Dirac point along several typical paths are shown in
Fig. 2(d). We can find that the degenerate behaviors vary
along different directions in momentum space. In addition,
it is worth noting that there is a quadratic triple degenerate
point at H, of which the branches are decoupled along
the Γ-H-N path [see Fig. 2(d)], exhibiting the quadratic
dispersion.
To obtain topological surface states of Si (cI16) at the

HSPs, we construct a phonon Wannier tight-binding
Hamiltonian using the real-space force constants [45].
The calculated phonon local density of states and the
corresponding isofrequency surface projected on the (110)
surface of Si (cI16) are illustrated in Figs. 2(e) and 2(f),
respectively. The surface states are composed of two sets.
Each set can be viewed as the surface phonon states of

Weyl phonons because the Dirac points can be treated as
the overlap of two Weyl points with opposite chirality.
Figure 2(f) clearly shows that the phonon surface arcs cross
over the boundary of the first BZ and connect the
projections of two nonequivalent Dirac points.
In the following, we show 3D Dirac phonons in

Nb3Te3As along the HSLs. Nb3Te3As crystallizes in a
hexagonal structure with space group P63=m (No. 176), as
shown in Fig. 3(a). The bulk BZ and (101) surface BZ are
shown in Fig. 3(b). The results show that two phonon

FIG. 2. (a) Side and top views of Si (cI16) in the conventional cell. (b) The first BZ of the primitive cell and the (110) surface BZ.
(c) Phonon spectrum and density of states. (d) Phonon dispersion of a quadratic triple degenerate point (QTP) and Dirac phonon (DP)
along different directions. (e) Phonon surface states and (f) arcs projected on the (110) surface.

FIG. 3. (a) Side view of Nb3Te3As. (b) The first BZ and
projected surface BZ parallel to the kZ axis. (c) Phonon spectrum
of Nb3Te3As ranging from 4.8 THz to 6.5 THz. Square boxes
indicate the accidental degeneracies along the A’-Γ-A path.
(d) Phonon surface states near the Dirac phonon.
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branches cross along the A’-Γ-A path at a frequency of
approximately 6.34 THz [see Fig. 3(c)]. Such crossing
points are protected by the screw rotation symmetry S6z.
There are six 1D IRs, which associate with the eigenvalues
of S6z as En ¼ eiπn=3 · e−ikzc=2, where c is the lattice
constant and n is an integer (n ∈ ½0; 5�). Because of the
T symmetry, (E1, E5) and (E2, E4) respectively become
two pairs of complex conjugate representations, leading to
two sets of twofold-degenerate phonon branches along
A’-Γ-A. As a result, the Dirac point arising from the
crossing between (E1, E5) and (E2, E4) is present. In
addition, twofold and threefold degenerate points can also
be found, as 1D IR is allowed on the kz axis. Figure 3(d)
gives the phonon surface states along the projected Γ̃-Ã
path. There are two branches of nontrivial phonon surface
states, which are both terminated at the projected Dirac
point, exhibiting the unique topological feature.
To summarize, we have investigated the symmetry

conditions for the presence of 3D Dirac phonons in systems
with inversion symmetry, and two categories of 3D Dirac
phonons (i.e., at the HSPs and along the HSLs) are
uncovered. The symmetry arguments reveal that the PT
symmetry and nonsymmorphic symmetries play critical
roles in the topological classification of 3D Dirac phonons.
As a result, all the centrosymmetric space groups that can
host 3D Dirac phonons are identified. Furthermore, we
provide several realistic materials that realize 3D Dirac
phonons. These candidates are expected to be confirmed by
experiments such as inelastic neutron scattering, inelastic
x-ray scattering, and He atom scattering. Our findings not
only offer the complete topological classification of 3D
Dirac phonons in crystalline solids, but can also be
extended to 3D Dirac bosons in both phononic and
photonic systems.
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