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We provide strong evidence that the effective spin-spin interaction in a multimodal confocal optical
cavity gives rise to a self-induced glassy phase, which emerges exclusively from the peculiar Euclidean
correlations and is not related to the presence of disorder as in standard spin glasses. As recently shown, this
spin-spin effective interaction is both nonlocal and nontranslational invariant, and randomness in the
atoms’ positions produces a spin glass phase. Here we consider the simplest feasible disorder-free setting,
where atoms form a one-dimensional regular chain and we study the thermodynamics of the resulting
effective Ising model. We present extensive results showing that the system has a low-temperature glassy
phase. The model depends on the adimensional parameter α ¼ ða=w0Þ2, a being a lattice spacing and w0 an
interaction length scale. Notably, for rational values of α ¼ p=q, the number of metastable states at low
temperature grows exponentially with q and the problem of finding the ground state rapidly becomes
computationally intractable, suggesting that the system develops high-energy barriers and ergodicity
breaking occurs.
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Cavity quantum electrodynamics (CQED) provides—
together with trapped ions [1,2], circuit [3], and waveguide
QED [4]—one of the state-of-the-art controllable platforms
for quantum simulation. In a first series of experiments
[5,6], it was shown that Bose-Einstein condensates (BECs)
in single-mode optical cavities undergo an abrupt change
from a dark to a superradiant state, which is the non-
equilibrium counterpart of the phase transition predicted by
Hepp and Lieb (HL) [7–11] within their exact statistical
physics analysis of the Dicke model.
More recently, a setting where the optical cavity sustains

many degenerate electromagnetic modes was explored
[12]. Here, the physics arising from the interaction of
the many modes with the atoms in random positions is
much richer than the one observed in the single-mode case
[13–15]: first, frustration (generated by the random posi-
tions of the atoms in the cavity) may lead to a glassy
behavior; second, the form of the effective spin-spin
couplings is reminiscent of the interaction arising from
Hebbian learning in the so-called Hopfield model [16],
which describes the simplest way to obtain an associative
memory.
This discovery led the authors of Refs. [17,18] to

investigate the equilibrium statistical physics of the full
quantum disordered Dicke model with M degenerate
electromagnetic modes, by generalizing the original work
by HL. This analysis allowed them to establish that, in the
strong coupling limit, the energy landscape shares the same
structure of minima of the Hopfield model, i.e., a ferro-
magnetic landscape with M degenerate ground states

corresponding to the stored memory patterns. Whether
this picture survives to the interaction with an environment
has been the subject of subsequent work [19–22].
The feasibility of a quantum optical-based associative

memory has been investigated in a series of papers by Lev
and co-workers [23–25]. Here the authors proved that the
effective spin-spin interaction can be sign changing with a
tunable range and identified a protocol to implement
associative memories in CQED [26].
More importantly, they were able to obtain the specific

form of the interaction for confocal cavities [26], showing
explicitly its nonlocal and nontranslational invariant nature
(in fact, it depends on the scalar product of the positions of
two atoms). Understanding the physics arising by this
peculiar spin-spin interaction is a challenge by itself, since
taking into account Euclidean correlations is commonly a
hard task in statistical physics.
Our goal in this Letter is to shed light on the spin-spin

interaction arising in multimodal optical cavities by
revealing an exotic spin glass phase that appears at low
temperature without any explicit quenched disorder in the
Hamiltonian. We consider the simplest feasible setting:
atoms lie on a regular one-dimensional chain, collinear with
the main axis of the optical cavity. In this case, the energy
depends on a single adimensional parameter α. For rational
α ¼ p=q, the interaction is periodic and we show that
the free-energy landscape is a q-dimensional manifold.
Surprisingly, as q grows, we observe an exponential
proliferation of metastable states, which is typical of
disordered systems with a complex free-energy landscape.
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Our analysis shows that in multimodal CQED the presence
of disorder in the atomic positions is not fundamental to
achieve such a rough landscape. More formally, this
physical system provides an explicit realization of self-
induced quenched disorder as introduced in Refs. [27–29].
This emerging feature and its relation to frustration have
been investigated also in models at finite connectivity
[30,31] and is expected to play a role in the understanding
of the low-temperature phase of structural glasses [32].
The model.—We consider an Ising model with energy

EðσÞ ¼ 1
2N

P
N−1
i;j¼0 Jijσiσj, where the σi’s are binary �1

variables and the couplings depend on the positions ri of
the atoms in the cavity as

Ji;j ¼ cos

�
2π

ri · rj
w2
0

�
; ð1Þ

where the length scale w0 is proportional to the width of the
Gaussian fundamental transverse mode. This form of the
effective spin-spin interaction has been derived in detail in
Refs. [23–25]. In [26] the authors investigated, mostly with
numerical methods, the properties of the resulting energy
landscape, focusing on the case where atoms were in
random positions. Here we consider a disorder-free sce-
nario where atoms form a one-dimensional lattice; i.e., the
mth atom is in position rm ¼ aðm − LÞn̂ where a is the
lattice spacing, L ¼ N=2, and n̂ is a unit vector orthogonal
to the cavity mirrors and origin at the center of the cavity.
This choice implies that the Lth atom lies at the origin of
the chain; since the interaction is nontranslationally invari-
ant, other conventions may qualitatively change the physics
of the system (see Supplemental Material for more details
[33]). Notice that the couplings in Eq. (1) depend on a
single adimensional parameter α ¼ ða=w0Þ2, which in the
experimental proposal [26] can be manipulated acting on
the positions of the BEC ensembles (the effective Ising
spins of the present model) via optical tweezers.
Variational free energy of the system.—Our first goal is

to investigate the thermodynamics of the Ising model with
couplings given by Eq. (1) by looking at its free-energy
f ¼ −1=ðNβÞ logZ, where β ¼ 1=T is the inverse of the
temperature T and Z ¼ P

σ e
−βEðσÞ is the partition function.

We stress that the thermodynamic temperature T that we
introduce here is not the real temperature of the exper-
imental implementation of the model. In fact, in [26] it is
proven that the relaxation dynamics of the system is a
steepest descent dynamics in the free-energy landscape at
null thermodynamic temperature T. For this reason, we will
focus on the case T ¼ 0 in the main text, and we will
discuss the high-temperature phase in the Supplemental
Material [33].
Analytical progress can be made for rational α ¼ p=q,

where p and q are coprime positive integers. For irrational
α, it is reasonable to expect that studying the rational
approximation obtained by truncating the continued frac-
tion expansion of α may deliver insights on the physics of

the model, as it occurs, for instance, in Ising systems with
long-range repulsion [34,35] or in the Frenkel-Kontorova
model [36].
The strategy to compute the partition function of the

model at rational α ¼ p=q is as follows: since the inter-
action is periodic with period q, it is convenient to
introduce q collective variables mr (r ¼ 0; 1;…; q − 1),
which represent the magnetizations on the sublattices
Λr ¼ fiqþ r; i ¼ 0; 1;…; 2l − 1g (where for simplicity,
L ¼ lq), i.e., mr ¼ 1=ð2lÞP2l−1

i¼0 σiqþr (see also Fig. 1).
Notice that jmrj ≤ 1∀ r ¼ 0; 1;…; q − 1. This choice of
grouping the microscopic variables allows us to write the
energetic contribution to the partition function as [33]

EðfmrgÞ ¼
l
q

Xq−1
r;s¼0

cos

�
2πp
q

rs

�
mrms: ð2Þ

The reduced q × q interaction matrix is depicted in Fig. 1
for two different values of α ¼ p=q. The entropic

(a)

(b)

(c)

FIG. 1. Collective variables, reduced interaction matrix, and
proliferation of metastable states increasing q. (a) Identification
of the collective variables to study the partition function ana-
lytically. Since the interaction is periodic, it is natural to group
spins lying on the sublattices Λr ¼ fiqþ r; i ¼ 0; 1;…; 2l − 1g.
In this way, we can define q mesoscopic magnetizations mr with
r ¼ 0; 1;…; q − 1 and reduce the partition function to an integral
over these q variables. (b) Reduced q × q interaction matrix for
two different values of α ¼ p=q. Removing the first row and
column, the resulting ðq − 1Þ × ðq − 1Þ matrix displays a reflec-
tion symmetry around the antidiagonal, which allows us to further
reduce the dimensionality of the free-energy manifold from q to
bq=2þ 1c. (c) Schematic representation by hierarchical cluster-
ing of the energy landscape at the two different values of
α ¼ 13=21; 21=34. We obtain this representation by displaying
the local minima of the energy in Eq. (2) as the leaves of a
dendrogram. Distance is increasing along the vertical axis and
pairs of distinct clusters at distance d (measured from their center)
are iteratively joined together in a new node at height d. As q
increases, we observe a proliferation of local minima.
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contribution can be obtained as well by counting the
degeneracy of each magnetization mr, i.e., how many
microscopic spin configurations contribute to a given value
of the magnetization. In the thermodynamic limit, we can
easily estimate this entropy as

SðfmrgÞ ¼ 2l
�
q log 2 −

X
σ¼�1

Xq−1
s¼0

1þ σms

2
logð1þ σmsÞ

�
:

ð3Þ

In conclusion, the variational free-energy density in the
thermodynamic limit is given by

fðfm̃rgÞ ¼ 1=ð2lqÞ½Eðfm̃rgÞ þ 1=βSðfm̃rgÞ� ð4Þ
and the actual free energy of the system at equilibrium
is obtained by finding the global minimum m̃� ¼
ðm̃�

0; m̃
�
1;…; m̃�

q−1Þ of this q-dimensional function.
Interestingly, we can further reduce the dimensionality
of the problem from q to bq=2þ 1c by exploiting the
symmetry under reflection around the antidiagonal of the
ðq − 1Þ × ðq − 1Þ interaction matrix obtained by removing
the first row and column of the original reduced matrix (see
also Fig. 1 and Supplemental Material [33]). This reduction
is crucial for numerical simulations, as it halves the number
of effective degrees of freedom of the model.
Exponential number of metastable states at T ¼ 0.—To

characterize the T ¼ 0 behavior of the model, we start by
focusing our attention on the enumeration of the metastable
states, i.e., local minima of the energy in Eq. (2). As a first
point, we observe a proliferation of the local minima of the
energy in Eq. (2) when we increase q. This phenomenon is
shown for two different values of α in Fig. 1(c), where we
exhibit a representation of the energy landscape based on
hierarchical clustering (see Fig. 1 for a more detailed
explanation). Note that, at variance with the usual spin
glass picture, where the number of metastable states
diverges in the thermodynamic limit, in the present case
this number is strictly finite as long as also q is fixed, and
the glassy behavior is observed only at large q. In the
following, we numerically characterize the scaling of the
number of metastable states with q.
Again our strategy is to probe the energy landscape by

performingmany gradient descents starting from a very large
number of different initial conditions sampled uniformly on
the q-dimensional hypercube jm̃rj ≤ 1∀ r ¼ 0; 1;…; q − 1
and to count the total number of different local minima
identified in this way. This algorithm presents two obvious
drawbacks: (i) it may fail in finding the local minima of
Eq. (4) with very narrow basins of attraction and (ii) for large
q it may systematically underestimate the number of local
minima if this is growing exponentially, since the number of
initial conditions we need to probe the landscape also grows
exponentially in q. Thus, our algorithm provides a lower
bound to the number of local minima at fixed q and may in

any case systematically miss those minima with extremely
narrow basins of attraction. As a consequence, we need to
pay particular attention to understand whether the estimate of
the local minima at a given qwe obtain is reliable or not, i.e.,
if the lower bound we provide is strict or not.
An effective method to check whether at a given q we

have exhaustively found most of the local minima of the
landscape is to monitor the number of distinct minima
found as a function of the number of gradient descents
performed [see insets in Fig. 2(a)]. In this way, we can
immediately argue whether the estimate is reliable by
looking at how close we are to saturation. It turns out that
∼105 gradient descents are sufficient below q ≃ 60,
whereas one should increase this number by at least one
order of magnitude for q > 60, and this is beyond our
computational power.
Our results for the scaling of the number of local minima

Nmin as a function of q are shown in Fig. 2(a): in the regime
where the estimate is reliable (up to values of q ≃ 60), we
find an exponential proliferation of metastable states of the
form Nmin ∼ bq with b ≃ 1.16.
We also computed the average linear size of the basins

(defined as the average distance between a minimum and
the furthest starting point leading to said minimum under
gradient descent), which is relevant for the application to
associative memories [26]. We found that these basins are
extensive in the thermodynamic limit; i.e., they occupy a
finite volume of the phase space, and their linear size grows
with q as qc with c ≃ 0.37.
Self-induced quenched disorder in CQED.—The expo-

nential scaling of the number of local minima, which is
similar to the one observed in spin glass models [37], is due
to the competition of ferromagnetic and antiferromagnetic
couplings in the Hamiltonian of the model, leading to
frustration. However, this result alone does not guarantee
that the energy landscape of our model is complex. Indeed,
it is well known that frustrated Hamiltonians of Ising spins
may display an exponential number of degenerate ground
states without exhibiting a spin glass phase, i.e., without
extensive energy barriers, as in the case of the antiferro-
magnetic Ising model on the triangular lattice.
A significant hint suggesting that the model has a true

glassy phase is given by the computational complexity of
the problem of finding the ground state. In fact, another
interesting feature of many genuine spin glass models with
complex energy landscapes is that finding their ground
state is a nondetermistic polynomial-time hard problem
(NP-hard problem) (intuitively this means that the compu-
tational complexity of this optimization problem grows
exponentially with the system size): this is true, for
instance, for the Sherrington-Kirkpatrick (SK) and for
the p > 2-spin Ising or spherical models [38,39] or for the
k-satisfiability problem [40]. Let us consider the effective
energy in Eq. (2): here we have to minimize a
quadratic function of q magnetizations on the domain
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jm̃rj∀ r ¼ 0; 1;…; q − 1. In computer science, this is
called a “quadratic programming” problem [41,42] and
its computational complexity depends on whether the
corresponding quadratic form is positive definite or not.
In particular, the problem is NP hard if the quadratic form
has at least one negative eigenvalue [43]. In the case of
Eq. (2), it is possible to show that the reduced interaction
matrix Jrs ¼ cosð2πprs=qÞ has at least one negative
eigenvalue for any q (see Supplemental Material [33]).
Even the NP-hard nature of the problem of finding the

ground state of a given model is not necessarily a symptom
of a complex free-energy landscape. Indeed, the theory of
computational complexity deals with the worst-case sce-
nario, whereas thermodynamic properties as the free energy
provide information on the typical behavior of the system.
As such, it may be that worst-case instances of a NP-hard
problem have zero measure with respect to the probability
distribution of the couplings and/or disorder. In our specific
case, we explicitly observed an exponential scaling of the
time needed to find the GS of the system using a state-of-the-
art generic quadratic programming optimizer (see Fig. 3),
suggesting that the problem under consideration is indeed a
worst-case instance, and that the model has a low-temper-
ature glassy phase.
This last observation allows us to highlight a crucial

difference between spin-spin interaction in multimodal

CQED and systems such as the SK model: in most spin
glasses, the number of random couplings grows with the
size of the system [e.g., in the SKmodel, we need to specify
NðN − 1Þ=2 parameters at size N]. On the contrary, the
Ising model we have studied does not contain explicitly any
quenched disorder, and only the parameter α has to be
specified at any sizeN. Only a few spin models exhibiting a
complex free-energy landscape without quenched disorder

FIG. 3. The run time for the ground-state search problem scales
exponentially with q. Scaling of the run time of the ground-state
(GS) search performed using a state-of-the-art optimizer (IBM
CPLEX [44,45]) as a function of q (again, different values of p
are shown for each value of q). Up to q ¼ 45, the run time scales
exponentially with q, suggesting that the GS search problem is a
worst-case instance of nonpositive-definite quadratic program-
ming.

(b)(a)

(c)

FIG. 2. Exponential number of metastable states increasing q. (a) Scaling of the number of local minima of the energy in Eq. (2) as a
function of q (different values of p are shown for each value of q; see Supplemental Material [33]). To check whether at a given q the
estimate of the number of metastable states is reliable, in the insets we display the number of distinct minima found as a function of
the number of gradient descents attempted for three representative values of q. The closer we are to saturation, the more accurate is the
estimate. Above q ∼ 60 the estimate is not reliable, since we are missing a large number of minima (see right inset). The log-linear scale
of the main plot highlights the exponential growth below q ∼ 60, where the estimate is reliable (see left insets). (b) The average linear
size of the basins of attraction at fixed α ¼ p=q grows algebraically with q as q0.37. Error bars denote one sample variance. (c) The linear
size of a given basin of attraction is measured by collecting all the initial conditions that flow to a given minimum and keeping as the
linear size the distance between the minimum and the farthest initial condition from it.
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exist in the literature [27–29]. These systems have been
studied extensively in the past, since they are considered
toy models of the glass transition, where disorder is self-
induced and not present at the level of the Hamiltonian.
Note that interaction in confocal CQED provides an
explicit physical realization (up to a rescaling of the
coupling constants and boundary terms) of the cosine
model introduced in Ref. [46], if one chooses p ¼ 1
and q ¼ N.
Discussion and outlooks.—The investigation of self-

induced glassy phases in confocal CQED presents one
major advantage over traditional solid-state systems: the
experimental setup is highly controllable. The interaction
can be tuned by manipulating the atoms’ positions and the
spin states can be probed by holographic imaging [23], in
contrast with standard spin glasses where the system is dirty
and quite difficult to probe. Another relevant aspect concerns
the typical timescales of the glassy dynamics in this
proposed quantum-optical setup. In typical realizations of
spin or structural glasses in condensed matter, the interaction
among degrees of freedom is mediated, respectively, by
conduction electrons or by intermolecular forces, while in
this quantum-optical proposal it is carried by photons: this
may lead to a speed-up of the glassy dynamics due to a faster
spin-flip rate. However, this is a speculative argument and a
more detailed analysis of the typical timescales of this
complex system is needed to substantiate this intuition.
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