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The strong mixing of close levels with two valence electrons in Be-like xenon greatly complicates ab initio
QED calculations beyond the first-order approximation. Because of a strong interplay between the electron-
electron correlation and QED effects, the standard single-level perturbative QED approach may fail, even if it
takes into account the second-order screened QED diagrams. In the present Letter, the corresponding
obstacles are overcome by working out the QED perturbation theory for quasidegenerate states. The
contributions of all the Feynman diagrams up to the second order are taken into account. The many-electron
QED effects are rigorously evaluated in the framework of the extended Furry picture to all orders in the
nuclear-strength parameter αZ. The higher-order electron-correlation effects are considered within the Breit
approximation. The nuclear recoil effect is accounted for as well. The developed approach is applied to high-
precision QED calculations of the ground and singly excited energy levels in Be-like xenon. The most
accurate theoretical predictions for the binding and excitation energies are obtained. These results deviate
from the most precise experimental value by 3σ but perfectly agree with a more recent measurement.
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Highly charged ions serve as ideal laboratories for testing
methods of bound-state quantum electrodynamics (QED) in
the presence of strong electromagnetic fields. Nowadays,
the most stringent tests are related to the Lamb-shift
measurements in H- and Li-like uranium [1–5], for asso-
ciated theory see, e.g., Refs. [6–8]. Nevertheless, these
results are not sufficient for the comprehensive comparison
of theory and experiment. In this respect, Be-like ions being
the simplest example of atomic systems with more than one
electron in a valence shell are of particular interest. QED
effects in Be-like ions are of the same order of magnitude as
in He- and Li-like ions (see, e.g., the recent review [9], and
references therein). Therefore, these ions have the capacity
to provide tests of QED at the level comparable to that of Li-
like systems. However, in contrast to three-electron ions,
essentially new many-particle QED effects appear in this
case. Electromagnetic interaction of the L-shell electrons,
combined with intershell correlation effects, leads to a
strong mixing of the close energy levels of the same
symmetry. As a result, highly charged Be-like ions pose
a serious challenge to atomic structure calculations within
the framework of bound-state QED. Despite numerous
relativistic calculations of the energy levels in these systems
[10–25], the QED effects have been included previously at
best within some one-electron approximations only.
Different theoretical approaches show significant scatter
of the results when compared with the available experi-
mental data [26–37] providing strong motivation for rig-
orous QED calculations of Be-like ions. The many-electron

QED effects for the ground state of Be-like ions were
evaluated in our recent works [38,39], where the calcu-
lations were performed using the QED perturbation theory
for a single level. However, due to the proximity of all the
n ¼ 2 levels, including the ground state, the accuracy of this
evaluation remains unclear, unless the calculations based on
the ab initio QED approach for quasidegenerate states are
performed. The present work is intended to solve this long-
standing and extremely difficult problem. The development
of the rigorous QED theory for the high-precision calcu-
lations of the ground and singly excited states in Be-like
ions is the primary goal of this study. To the best of our
knowledge, the QED calculations of the quasidegenerate
states at such a level have never been performed previously
for the systems with more than two electrons. Moreover, the
three-dimensional model subspace of quasidegenerate lev-
els, which we employ in the present Letter, is also
considered for the first time in the framework of ab initio
approach. It is the application of such sophisticated methods
that allows us to accurately address an issue of strong
interference between electron-electron interaction and QED
effects.
The natural zeroth-order approximation for the system-

atic QED description of highly charged ions is provided by
the Dirac equation:

½α · pþ βmþ V�ψn ¼ εnψn: ð1Þ
By substituting the Coulomb potential of the nucleus Vnucl
as the binding potential V in Eq. (1) one comes to the Furry

PHYSICAL REVIEW LETTERS 126, 183001 (2021)

0031-9007=21=126(18)=183001(9) 183001-1 © 2021 American Physical Society

https://orcid.org/0000-0002-7948-3775
https://orcid.org/0000-0002-4158-6963
https://orcid.org/0000-0003-1273-9008
https://orcid.org/0000-0001-8464-6199
https://orcid.org/0000-0001-6174-209X
https://orcid.org/0000-0002-2769-6891
https://orcid.org/0000-0001-9237-5667
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.183001&domain=pdf&date_stamp=2021-05-03
https://doi.org/10.1103/PhysRevLett.126.183001
https://doi.org/10.1103/PhysRevLett.126.183001
https://doi.org/10.1103/PhysRevLett.126.183001
https://doi.org/10.1103/PhysRevLett.126.183001


picture of QED [40]. The electron–nucleus interaction is
taken into account to all orders in αZ in this way (α is the
fine-structure constant, Z is the nuclear charge number). In
order to partially account for the electron-electron
interaction effects from the very beginning, the initial
approximation can be modified by adding some local
screening potential, V ¼ Vnucl þ Vscr. This corresponds
to the extended version of the Furry picture [8,41–51].
The remaining part of the interelectronic interaction as well
as the interaction with the quantized electromagnetic field
are to be considered within appropriate perturbation
theory (PT).
Standard nondegenerate PT suits well for single (iso-

lated) levels, such as the ground state 1s2 of He-like ions
[52], or when one studies, e.g., the fine-structure splitting
2pj-2s in Li-like ions [8,49]. However, considering more
complicated systems or excited states, one inevitably
encounters close levels with the same symmetry which
are mixed strongly by the electron-electron interaction.
Application of the extended Furry picture allows one to lift
the degeneracy in some cases. Nevertheless, the proper
treatment of these systems requires employing PT for
quasidegenerate levels. Both types of the QED perturbation
series can be conveniently constructed in the framework of
the two-time Green’s function (TTGF) method [53]. For a
set of s quasidegenerate levels, the TTGF method implies
the evaluation of the s × smatrixH which acts in the model
subspace Ω spanned by the unperturbed wave functions of
the states under consideration. The energies can be
obtained by diagonalizing the matrix H. PT for a single
level corresponds to s ¼ 1.
In the present work, we aim at the ab initio evaluation of

the ground and singly excited energy levels in Be-like
xenon. Xenon is chosen as the object of study since it is a
very suitable system to probe the nonperturbative (in αZ)
QED methods for evaluating the many-particle QED
effects: on the one hand, the nuclear charge number Z is
high enough to make the QED contributions rather pro-
nounced, and, on the other hand, there must be a strong
interference between the correlation and QED effects.
Despite the fact that our calculations are fully relativistic,
we employ the LS-coupling notations. The excited states
with the total angular momentum equal to J ¼ 0 and J ¼ 2,
namely 2s2p3P0 and 2s2p3P2 (here and in what follows,
the K shell is omitted for brevity), are considered as the
single levels. The corresponding unperturbed wave func-
tions in the jj coupling read as ð2s2p1=2Þ0 and ð2s2p3=2Þ2,
respectively. The states 2s2p3P1 and 2s2p1P1 with J ¼ 1
are studied within the two approaches: (a) as the isolated
levels, starting from the initial approximations ð2s2p1=2Þ1
and ð2s2p3=2Þ1, and (b) as a pair of quasidegenerate levels
within the two-dimensional subspace Ω. Finally, the bind-
ing energy of the ground 2s2s1S0 state is evaluated by
means of three independent approaches: (a) as the isolated
ð2s2sÞ0 level, (b) as one of the two quasidegenerate levels,

ð2s2sÞ0 and ð2p1=22p1=2Þ0, within the two-dimensional
subspace Ω, and (c) as one of the three quasidegenerate
levels, including the ð2p3=22p3=2Þ0 configuration, for
which the mixing coefficient can be even larger than for
ð2p1=22p1=2Þ0 [10,54]. The approach (a) for the ground
state reproduces the one which we have used in Ref. [38].
In the Coulomb potential, the unperturbed levels forming
the quasidegenerate subspaces are split only by the nuclear-
size and relativistic effects.
Let us briefly formulate our approach. In order to derive

all the relevant calculation formulas, we start with the
formalism in which the closed 1s2 shell is regarded as
belonging to the vacuum [53], and there are two L-shell
“valence” electrons. The redefinition of the vacuum is
carried out by changing the sign before i0 in the electron-
propagator denominators corresponding to the closed
shell; i.e., the standard Green’s function G is replaced as
follows:

GðωÞ≡X
n

jnihnj
ω − εn þ iεn0

→
X
n

jnihnj
ω − εn þ iηn0

; ð2Þ

where ηn ¼ εn − εF, and εF is the Fermi energy. The Fermi
energy is chosen to be higher than the energy of the closed-
shell electrons but lower than the valence-electron energy.
In this formalism, the one- and two-loop one-electron
Feynman diagrams include the contributions describing
the interaction between one valence electron and the closed
shell. These contributions can be separated by considering
the difference with the standard definition of the vacuum.
For instance, the first-order self-energy and vacuum-
polarization diagrams for the valence state jvi lead to
the one-photon exchange contribution:

ΔEð1Þ
int ¼

X
c

½Ivcvcð0Þ − Icvvcðεv − εcÞ�; ð3Þ

where IabcdðωÞ ¼ habjIðωÞjcdi, IðωÞ ¼ e2αμ1α
ν
2DμνðωÞ,

αμ ¼ ð1;αÞ, and DμνðωÞ is the photon propagator. We
stress that the treatment of the one-electron diagrams does
not depend on the type of PT. By employing this formalism,
we obtain the well-known expressions for the intershell-
interaction corrections derived previously for Li-like
systems; see, e.g., Refs. [8,55–57].
Now we turn to the discussion of the two-electron

diagrams within the formalism with the redefined vacuum.
These diagrams contain the three-electron contributions
corresponding to the interaction of both the valence elec-
trons with the 1s2 core. In the case of He-like ions and two-
dimensional subspace Ω, the formal expressions for the
second-order two-electron contributions were derived
within the TTGF method in Refs. [58–60]; see also
Ref. [61]. In the present work, we have generalized these
expressions to deal with an arbitrary number of quaside-
generate levels. The most complicated and time-consuming
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is the derivation of the formulas for the two-photon
exchange diagrams [62–65]. We restrict our consideration
only to the contribution of the ladder diagram. This
contribution is naturally divided into the reducible (“red”)
and irreducible (“irr”) parts. The reducible part involves the
terms with the intermediate states coinciding with the

quasidegenerate levels under consideration, while the irre-
ducible part corresponds to the remainder. The reducible
part is not affected by the redefinition of the vacuum, and its
contribution to H, arising from the interaction between the
valence electrons, reads as

Hred
ik ¼ −

1

2

X
P

ð−1ÞP
XEð0Þ

n ¼Eð0Þ
1
…Eð0Þ

s

n1n2

i
2π

Z
∞

−∞
dω

�
IPi1Pi2n1n2ðω − εPi1ÞIn1n2k1k2ðεk1 − ωÞ
ðω − εn1 − i0Þðωþ εn2 − Ēð0Þ

ik − i0Þ
þ f1 ↔ 2g

�
; ð4Þ

where the indices i and k enumerate the quasidegenerate states, P is the permutation operator, Eð0Þ
n ¼ εn1 þ εn2 ,

Ēð0Þ
ik ¼ ðEð0Þ

i þ Eð0Þ
k Þ=2, and f1 ↔ 2g means the expression with the transposed indices 1 and 2. The contribution of the

irreducible part of the ladder diagram within the employed formalism can be expressed as follows:

H̃irr
ik ¼ 1

2

X
P

ð−1ÞP
XEð0Þ

n ≠Eð0Þ
1
…Eð0Þ

s

n1n2

i
2π

Z
∞

−∞
dω

�
IPi1Pi2n1n2ðω − εPi1ÞIn1n2k1k2ðεk1 − ωÞ

ðω − εn1 þ iηn10ÞðĒð0Þ
ik − ω − εn2 þ iηn20Þ

þ f1 ↔ 2g
�
: ð5Þ

We readily extract the desired three-electron contribution from Eq. (5):

δH3el
ik ¼ −

1

2

X
P

ð−1ÞP
X
c

X
n

1

Ēð0Þ
ik − εc − εn

½IPi1Pi2ncðĒð0Þ
ik − εc − εPi1ÞInck1k2ðεk1 þ εc − Ēð0Þ

ik Þ

þ IPi1Pi2ncðεc − εPi2ÞInck1k2ðεk2 − εcÞ þ f1 ↔ 2g�: ð6Þ

The total three-electron contribution can be obtained by
studying the crossed diagram and the two-electron self-
energy and vacuum-polarization graphs.
By considering the one- and two-electron diagrams in

the formalism with the redefined vacuum, we take into
account all the necessary contributions describing the
interaction between the L and K shells. In order to evaluate
the total binding energies of Be-like ions, we have to add
the QED contributions corresponding to the 1s2 core. This
issue is discussed in detail, e.g., in Refs. [61,66]. As a
result, our numerical approach rigorously takes into
account all the contributions of the first and second orders
of QED PT. The electron-correlation contributions due to
the exchange by three or more photons are accounted for
within the Breit approximation in the present work. The
corresponding calculations are based on the Dirac-
Coulomb-Breit Hamiltonian and performed by means of
the large-scale configuration-interaction (CI) method in the
basis of the Dirac-Sturm orbitals [67–69]. The procedure of
how to merge the QED calculations with the higher-order
interelectronic-interaction contributions in the case of
quasidegenerate levels was suggested first in Ref. [66]
and described in more detail in Ref. [61]. Finally, we
account for the nuclear recoil and nuclear polarization
effects which lie beyond the external-field approximation,
that is beyond the Furry picture.

Let us now turn to the discussion of the numerical
results. In Table I, we present the binding energies of the
ground and singly excited states in Be-like xenon. The
calculations are performed starting from the Coulomb
potential as well as within the extended Furry picture. In
the latter case, the core-Hartree (CH) and local Dirac-Fock
(LDF) screening potentials are incorporated in Eq. (1). The
description and applications of these potentials can be
found, e.g., in Refs. [43,51,70]. For the nuclear charge
distribution, the Fermi model is used. The root-mean-
square (rms) radius and the nuclear mass of the isotope
132Xe are taken as in Ref. [71].
As noted above, for the ground and J ¼ 1 states we

construct the alternative perturbation series for both the
single and the quasidegenerate levels. The type of PT is
shown in the first column of Table I, where the size of the
subspaceΩ is indicated. The columns labeled with A, B, C,
and D demonstrate how the energies change when we
successively take into account different contributions. In
the column labeled A, we present the values obtained
within the Breit approximation by means of the CI method.
From Table I, one can see that for the specific potential
these results do not depend on the size of Ω. We note that
the 1 × 1 values are just the CI energies, whereas the 2 × 2
and 3 × 3 values are obtained as the eigenvalues of the
matrices H which are constructed based on the CI
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calculations in accordance with the prescriptions from
Ref. [61]. The energies for the specific subspace Ω in
the column labeled A vary slightly from the potential to
potential. This variation is caused by the dependence of the
positive-energy-states projectors in the Dirac-Coulomb-
Breit Hamiltonian on the initial approximation in our
approach; see the discussion, e.g., in Refs. [61,69].
The results in the column labeled B are obtained by

adding the first-order QED contributions, namely the self-
energy, vacuum polarization, and frequency-dependent
correction of the one-photon exchange contribution, as
well as the nuclear recoil and nuclear polarization con-
tributions. We stress that for the quasidegenerate levels the
inclusion of the terms is not quite additive because of the
mixing. One can see that the results for different potentials
demonstrate significant scatter. The scatter can be reduced

by considering the second-order QED corrections. This is
done in the column labeled C, where we add the
contributions of the two-electron self-energy and vac-
uum-polarization diagrams, the nontrivial QED part of
the two-photon exchange contribution (beyond the Breit
approximation), and the two-loop one-electron corrections.
The difference between the calculations with the Coulomb,
CH, and LDF potentials indeed decreases going from B
to C. The values in the column labeled C obtained for the
screening potentials are shifted slightly with respect to the
values obtained for the Coulomb potential. This results
from a rearrangement of the perturbation series within the
extended Furry picture.
From the column labeled C, it is seen that the energy of

the ground 2s2s1S0 state considerably shifts as we pass
from 1 × 1 to 2 × 2. However, the value of this shift is

TABLE I. Binding energies (with the opposite sign) of the ground and singly excited states in Be-like xenon (in eV). Comparison of
the different approaches: A, B, C, and D. See the text for details.

Ω Veff A B C D

2s2s1S0

1 × 1 Coul 101 071.884 100 970.193 100 973.026
CH 101 071.948 100 973.924 100 972.977 100 973.569
LDF 101 071.928 100 973.451 100 972.981 100 973.400

2 × 2 Coul 101 071.884 100 970.443 100 973.244 100 973.263
CH 101 071.948 100 974.157 100 973.194 100 973.246
LDF 101 071.928 100 973.682 100 973.198 100 973.237

3 × 3 Coul 101 071.884 100 970.487 100 973.278 100 973.240
CH 101 071.948 100 974.199 100 973.229 100 973.241
LDF 101 071.928 100 973.724 100 973.233 100 973.236

2s2p3P0

1 × 1 Coul 100 961.328 100 866.432 100 868.743 100 868.704
CH 100 961.373 100 869.738 100 868.699 100 868.710
LDF 100 961.356 100 869.227 100 868.703 100 868.705

2s2p3P1

1 × 1 Coul 100 938.533 100 843.637 100 845.987 100 845.930
CH 100 938.579 100 846.944 100 845.941 100 845.935
LDF 100 938.562 100 846.433 100 845.946 100 845.930

2 × 2 Coul 100 938.533 100 843.635 100 845.975 100 845.935
CH 100 938.579 100 846.941 100 845.930 100 845.941
LDF 100 938.562 100 846.430 100 845.934 100 845.935

2s2p3P2

1 × 1 Coul 100 596.593 100 501.446 100 503.789 100 503.754
CH 100 596.656 100 504.784 100 503.744 100 503.757
LDF 100 596.637 100 504.272 100 503.748 100 503.751

2s2p1P1

1 × 1 Coul 100 533.196 100 438.050 100 440.465 100 440.441
CH 100 533.262 100 441.390 100 440.416 100 440.445
LDF 100 533.242 100 440.878 100 440.420 100 440.439

2 × 2 Coul 100 533.197 100 438.053 100 440.477 100 440.437
CH 100 533.262 100 441.392 100 440.428 100 440.439
LDF 100 533.242 100 440.880 100 440.432 100 440.434
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almost independent of the initial approximation. The shift
is explained by the accurate treatment of the mixing of the
states within the model subspace. When we extend Ω by
including the ð2p3=22p3=2Þ0 configuration, the ground-state
energy acquires an additional shift which is smaller by an
order of magnitude. The uncertainties of these calculations
are determined, in particular, by the uncalculated screened
QED contributions of the second order in 1=Z. Nowadays,
these corrections are inaccessible by the rigorous QED
methods. We can estimate them approximately employing
the model Lamb-shift (QEDMOD) operator which has been
suggested recently in Refs. [72,73] and successfully
applied to the QED calculations in various atomic systems
[69,74–79]. In order to estimate the screened QED effects
of the second order in 1=Z, we have introduced the
QEDMOD operator into Eq. (1) and evaluated the two-
photon exchange contribution in the Breit approximation
using the related one-electron basis. The correction of
interest was obtained by subtracting the corresponding
contribution calculated without the QEDMOD operator. The
binding energies with these corrections included are shown
in the column labeled D in Table I. One can see that the
1 × 1 values for the 2s2s1S0 state tend to the eigenvalues of
the matrices H. However, the discrepancy of the results for
two screening potentials is large. Within nondegenerate PT,
the higher-order QED effects contribute significantly, and
their contribution cannot be neglected. On the other hand,
in the column labeled D the difference between the 2 × 2
and 3 × 3 values decreases, and the Coulomb results
become closer to the ones obtained for the screening
potentials. Based on all the results given in Table I, we
conclude that the 3 × 3 subspace Ω is sufficient for the
proper treatment of the electron-correlation and QED
effects on the ground-state binding energy. As for the
J ¼ 1 states, the situation, in principal, is the same.
However, the mixing is less pronounced than for the
ground state.
The values shown in the column labeled D of Table I for

the LDF potential and the maximum size of the subspaceΩ
are employed as the final results. The uncertainties are
obtained by summing quadratically several contributions.
First, in addition to the numerical errors, we take into
account the uncertainties of the nuclear-size effect and of
the two-loop one-electron corrections [71]. Second, we
estimate the uncalculated higher-order QED contributions
through several means. The QED corrections to the
electron-correlation effects of third and higher orders are
estimated according to the procedure from Ref. [61]. The
screening of the two-loop contributions is estimated by
multiplying the corresponding term for 1s by the
conservative factor 2=Z. We take into account the scatter
of the results obtained for the different potentials as
well. Finally, having in mind that the calculations of the
screened QED effects of the second order in 1=Z in
the column labeled D are approximate, we take the

corresponding correction with the 100% uncertainty. As
a result, for the ground-state binding energy we obtain
E½2s2s1S0� ¼ −100 973.236ð44Þ eV, which deviates from
−100 972.921ð85Þ eV [38]. We have to admit that the
higher-order QED effects have been underestimated in our
previous calculations. We note that the current 1 × 1 value
presented in the column labeled C for the LDF potential,
which is obtained within the approach closest to Ref. [38],
is also shifted with respect to the old one within the
designated error bar. The reasons are in the different
approach to evaluate the higher-order interelectronic-inter-
action contributions within the Breit approximation, the
revised two-loop one-electron corrections, and the updated
values of the fundamental constants [80]. The binding
energies of the singly excited levels are E½2s2p3P0� ¼
−100 868.705ð42Þ eV, E½2s2p3P1�¼−100845.935ð42ÞeV,
E½2s2p3P2� ¼ −100 503.751ð42Þ eV, and E½2s2p1P1� ¼
−100 440.434ð42Þ eV. We consider the present procedure
for the estimation of the theoretical uncertainties to be much
more reliable that the one applied earlier in Ref. [38], since it
is based on the comprehensive analysis of the results obtained
by using different starting potentials within alternative PTand
on the direct evaluation of the higher-order QED effects via
the QEDMOD operator.
The obtained binding energies are used to evaluate the

excitation energies for the 2s2p2Sþ1PJ states presented in
Table II. The uncertainties are estimated similarly to the
binding energies. The major part of the one-electron
contributions cancels when the binding energies are sub-
tracted. This leads to a considerable reduction of the
numerical error. Along with it, we take the same estimate
of the higher-order QED correction to the electron-corre-
lation contribution and the uncertainty related to the
screened two-loop diagrams as for the ground state. We
note that the total theoretical uncertainties of the excitation
energies cover the results obtained for the different initial
approximations, including the Coulomb potential, as well

TABLE II. Excitation energies in Xe50þ (in eV). TW refers to
this work.

2s2p3P0 2s2p3P1 2s2p3P2 2s2p1P1 Ref.

Theory
104.531(9) 127.300(9) 469.484(7) 532.802(7) TW
104.5(25) 127.3(25) 469.6(25) 532.9(25) [69]
104.475 127.282 469.449 532.877 [20]
104.663 127.475 470.004 533.401 [18]

127.168 469.25 532.62 [16]
127.301 532.854 [15]

104.482 127.267 469.386 532.759 [14]
103.722 126.846 468.338 532.766 [11]

Experiment
127.269(46) 469.474(81) 532.801(16) [37]
127.260(26) [35]
127.255(12) [33]
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as the values with and without the QEDMOD correction
given in the column labeled D in Table I. In Table II,
we compare our excitation energies with the results of the
previous relativistic calculations and recent measurements.
In Ref. [69], these energies were evaluated by means of the
CI method with the use of the QEDMOD operator, and the
uncertainties were estimated in a rather conservative way.
However, the comparison with the results of the present
work shows that the accuracy of this approach is at least
one order of magnitude higher. As for the experiments, our
results are in perfect agreement with the most recent
measurements performed in Ref. [37], especially for the
2s2p1P1 state, for which the experimental uncertainty is
minimal. In Ref. [37], the excitation energies were mea-
sured for Be-like 136Xe which has the different values of the
nuclear mass and rms radius. The corresponding correction
for the data given in Table II constitutes less than 1 meV
and, for this reason, can be neglected. On the other hand,
the most precise measurement for the 2s2p3P1 state [33]
deviates from our result by almost 4 times the experimental
uncertainty and by 5 times our theoretical uncertainty. The
reason for this discrepancy is unclear to us. We note that
within our approach the binding energies of both the
2s2p3P1 and 2s2p1P1 states are obtained in the framework
of the same PT, and the corresponding excitation energies
are expected to be on the same level of accuracy. Trying to
shed some light on this issue, we have applied the
developed ab initio approach to evaluation of the excitation
energy for the 2s2p3P1 state in Be-like molybdenum and
uranium. The obtained values, Eth½Mo� ¼ 90.005ð4Þ eV
and Eth½U� ¼ 297.90ð11Þ eV, are in agreement with
the results of the available high-precision measure-
ments: Eexp t½Mo� ¼ 89.983ð20Þ eV [81] and Eexp t½U� ¼
297.799ð12Þ eV [5]. In molybdenum, the electron-electron
correlations are more important than in xenon, whereas in
uranium the QED effects come to the fore. So, we can
conclude that the observed discrepancy in xenon is hardly
explained by the calculational problems with the correla-
tion or QED effects. We hope that this discrepancy will
trigger the new studies of Be-like systems. It should be
stressed also that the achieved theoretical accuracy for Be-
like uranium provides tests of QED as well as its two-loop
part at the same accuracy level as in Li-like ions. There is
also the ultraprecise measurement of the fine-structure
3P1 − 3P2 interval in Be-like argon [34]. We will address
this system in the near future.
To summarize, ab initio QED calculations of the binding

energies of the ground and singly excited states in Be-like
xenon have been performed with the most advanced
methods available to date. The calculations merge the
rigorous QED treatment up to the second-order contribu-
tions and the higher-order electron-correlation effects
evaluated within the Breit approximation. For the first
time, the ground state as well as the states with the total
angular momentum equal to 1 are treated by means of

perturbation theory for quasidegenerate levels. As a result,
we have obtained the most precise theoretical predictions
for the energy levels and Δn ¼ 0 intra-L-shell excitation
energies, which are in perfect agreement with the most
recent measurements [37]. Meanwhile, some discrepancy
with the previous experiment [33] is found. New measure-
ments with Be-like xenon and other Be-like ions are in
demand.
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