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For 2-2 scattering in quantum field theories, the usual fixed t dispersion relation exhibits only two-
channel symmetry. This Letter considers a crossing symmetric dispersion relation, reviving certain old
ideas from the 1970s. Rather than the fixed t dispersion relation, this needs a dispersion relation in a
different variable z, which is related to the Mandelstam invariants s, t, u via a parametric cubic relation
making the crossing symmetry in the complex z plane a geometric rotation. The resulting dispersion is
manifestly three-channel crossing symmetric. We give simple derivations of certain known positivity
conditions for effective field theories, including the null constraints, which lead to two sided bounds and
derive a general set of new nonperturbative inequalities. We show how these inequalities enable us to locate
the first massive string state from a low energy expansion of the four dilaton amplitude in type II string
theory. We also show how a generalized (numerical) Froissart bound, valid for all energies, is obtained from
this approach.
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Introduction.—Dispersion relations provide nonpertur-
bative representations for scattering amplitudes in quan-
tum field theories [1,2]. The usual way to write
dispersion relations in the context of 2-2 scattering of
identical particles is to keep one of the Mandelstam
invariants, usually t, fixed and write a complex integral in
the variable s. This approach naturally leads to an s − u
symmetric representation of the amplitude. Then, one
imposes crossing symmetry as an additional condition. A
similar approach can also be developed for Mellin
amplitudes for conformal field theories. Recent develop-
ments in this direction include Refs. [3–5].
The amplitude’s resulting representation not having

manifest three-channel crossing symmetry may appear
to be a drawback. For instance, in perturbative quantum
field theories, when we compute Feynman diagrams, the
amplitude’s resulting expansion exhibits crossing sym-
metry. In the worldsheet formulation of string theory, the
tree level sphere diagram, for instance, is also mani-
festly crossing symmetric. Hence, it seems like a
natural question to ask as to how would one directly
see the structure of Feynman diagrams from dispersion
relations.
Is there a crossing symmetric version of the dispersion

relations? In the 1970s, this question was briefly considered
in a few papers, for example, in 1972 by Auberson and Khuri

in Ref. [6] and in 1974 by Mahoux, Roy, and Wanders in
Ref. [7]. Unfortunately, due to the technical complications
involved, barring for a smattering of a few papers (e.g.,
Ref. [8]), this approach has not been well explored in the
literature. We will follow Ref. [6] and revive this line of
questioning again. In the CFT context, Polyakov’s work in
Ref. [9] proposed a fully crossing symmetric bootstrap,
which was developed in Refs. [10,11]. However, this
approach currently lacks a nonperturbative derivation for
d ≥ 2. Our methods in this Letter will enable us to address
this important question in the near future [12].
Dispersion relations also give a window to understanding

how analyticity and unitarity assumptions for the high
energy behaviour of amplitudes constrain low energy
physics contained in effective field theories (EFTs) [13].
Our manifestly crossing symmetric approach not only leads
to a simpler and unifying derivation of recently considered
positivity constraints in EFTs [14–17], but also enables us
to write down a completely general set of positivity
constraints on the Wilson coefficients. In particular, we
will provide straightforward derivations of many of the
upper bounds on the ratios of Wilson coefficients, as well as
the null constraints listed in Refs. [16,17], leading to the
lower bounds. Our formalism will enable us to write down
general formulas for the upper bounds and the independent
null constraints.
We will consider two novel applications of our con-

straints. First, using them, we will locate the first massive
string pole from the low energy expansion for the tree-level
four-dilaton scattering in type II string theory (e.g.,
Ref. [18]). Second, our approach enables us to derive a
numerical upper bound on the total scattering cross section
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of identical particles valid at all energies, generalizing the
famous Froissart bound [19]. Further, we will explain how
our approach leads to a structure like the Feynman diagram
expansion in QFTs.
Crossing symmetric dispersion relation.—We begin

by considering cubic hypersurfaces [6] in the variables
s1 ¼ s − μ=3, s2 ¼ t − μ=3, s3 ¼ u − μ=3 ¼ −s1 − s2,
μ ¼ 4m2, where s, t, u are usual Mandelstam variables.
Explicitly, these hypersurfaces will be given by
½s1ðzÞ − a�½s2ðzÞ − a�½s3ðzÞ − a� ¼ −a3, with a being a
real parameter [20]. The si’s can be parametrized via

sk ¼ a −
aðz − zkÞ3
z3 − 1

; k ¼ 1; 2; 3; ð1Þ

where zk are cube roots of unity and we will restrict
−μ=3 ≤ a < 2μ=3. In Ref. [6], it is shown that the
amplitude is analytic in the interval −6.71μ < a < 2μ=3.
Importantly, note that a ¼ ðs1s2s3Þ=ðs1s2 þ s2s3 þ s3s1Þ is
crossing symmetric in the usual variables. The amplitude
Mðs1; s2Þ can be written as an analytic function of ðz; aÞ,
i.e., M̄ðz; aÞ ¼ M½s1ðzÞ; s2ðzÞ�. M½s1ðzÞ; s2ðzÞ� has
physical cuts for sk ≥ 2μ=3, k ¼ 1, 2, 3. These physical
cuts get mapped to portions of arcs on the unit circle in the
complex z plane. We can write down a twice subtracted
dispersion relation z variable, for fixed a. For the com-
pletely crossing symmetric case, the dispersion relation
simplifies dramatically in terms of the s1, s2, s3 variables:

M0ðs1; s2Þ ¼ α0 þ
1

π

Z
∞

2μ=3

ds01
s01

A½s01; sðþÞ
2 ðs01; aÞ�

×Hðs01; s1; s2; s3Þ; ð2Þ

where Aðs1; s2Þ is the s-channel discontinuity and

Hðs01; s1; s2; s3Þ ¼
�

s1
ðs01 − s1Þ

þ s2
ðs01 − s2Þ

þ s3
ðs01 − s3Þ

�
;

sðþÞ
2 ðs01; aÞ ¼ −

s01
2

�
1 −

�
s01 þ 3a
s01 − a

�
1=2

�
;

which defines the crossing symmetric kernel H [21]. α0 is a
subtraction constant. From hereon, we will follow a
more direct route than what was followed in Ref. [6].
This final form in Eq. (2) is manifestly three channel

crossing symmetric. Notice the nontrivial sðþÞ
2 dependence

in A—we emphasize that the crossing symmetric s1, s2, s3
dependence also comes via sðþÞ

2 through a. One can use the
crossing symmetric form and carry out several checks. For
instance, we have numerically investigated how well the
representation represents the type II superstring four dilaton
amplitude [21]. For this case, on the real ðs1; s2Þ plane, the
crossing symmetric formula is often a better representation
than the conventional dispersion relation. For the situation
where we have no massless poles, or where we subtract them
out, the crossing symmetric amplitude has an expansion

M0ðs1; s2Þ ¼
X∞
p;q¼0

Wpqxpyq; ð3Þ

with x ¼ −ðs1s2 þ s2s3 þ s3s1Þ, y ¼ −s1s2s3. Note that
Hðs01; s1; s2; s3Þ ¼ ½xð2s01 − 3aÞ�=½xa − xs01 þ s031 �, which
can be seen by writing sk’s in terms of ðz; aÞ and identifying
z3=ðz3 − 1Þ2 ¼ −x=27a2. We can now expand Eq. (2) in
powers of x, a using the s-channel discontinuity which has a
partial wave expansion in terms of Gegenbauer polynomials
involving even spins

Aðs1; sðþÞ
2 ðs1; aÞÞ ¼ Φðs1Þ

X∞
l¼0

ð2lþ 2αÞalðs1ÞCðαÞ
l ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξðs1; aÞ

p
Þ;

ξðs1; aÞ ¼ ξ0 þ 4ξ0

�
a

s1 − a

�
; ξ0 ¼

s21
ðs1 − 2μ=3Þ2 ;

where α ¼ ðd − 3Þ=2, Φðs1Þ ¼ ΨðαÞ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1 þ μ=3

p
=

ðs1 − 2μ=3Þα�, and ΨðαÞ is real positive number. Expand-
ing the Gegenbauer polynomials around ξ ¼ ξ0, with

pðjÞ
l ðξ0Þ ¼ ∂jCðαÞ

l ð ffiffiffi
ξ

p Þ=∂ξjjξ¼ξ0
, we find the coefficient

of am leading to an inversion formula

Wn−m;m ¼
Z

∞

2μ
3

ds1
s1

Φðs1Þ
X∞
l¼0

ð2lþ 2αÞalðs1ÞBðlÞ
n;mðs1Þ;

BðlÞ
n;mðs1Þ ¼

Xm
j¼0

pðjÞ
l ðξ0Þð4ξ0Þjð3j −m − 2nÞð−nÞm

πs2nþm
1 j!ðm − jÞ!ð−nÞjþ1

; ð4Þ

for n ≥ 1. Note that W0;0 ¼ α0. Equation (4) allows two
lines of investigation. (a) For n ≥ m with n ≥ 1, we get the
coefficients in terms of alðs1Þ. Since partial wave unitarity
implies 0 ≤ alðs1Þ ≤ 1, we can find positivity constraints
on Wn−m;m. (b) For n < m with n ≥ 1, the coefficients
should vanish, as needed by Eq. (3), which give rise to
nontrivial constraints on alðs1Þ. Notice that since l is even,
we will need l ≥ 2n. These sum rules or “null constraints”
are instrumental in getting the lower bounds on Wn−m;m in
EFTs. We will use these sum rules to put a bound on the
total cross section at any s1, generalizing the famous
Froissart bound.
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Constraining QFTs.—Now from Eq. (4), we can derive
inequalities involving Wp;q. We use the unitarity con-

straints 0 ≤ alðs1Þ ≤ 1 as well as CðαþkÞ
l−k ð2μ=3δþ 1Þ ≥ 0,

for δ ¼ s1 − 2μ=3 ≥ 0, α ≥ 0, μ ≥ 0. Since the range of s1
in Eq. (4) starts at 2μ=3, we have introduced δ as a
convenient variable. We have

ffiffiffiffiffi
ξ0

p ¼ 2μ=3δþ 1. Note that

pðjÞ
l ’s involve derivatives of Gegenbauer. Specifically we

find the useful expression

BðlÞ
n;mðs1Þ ¼

Xm
k¼0

UðαÞ
n;m;kð−1ÞkþmCðαþkÞ

l−k

�
2μ

3δ
þ 1

�
;

where [22]

UðαÞ
n;m;k ¼

Xm
j¼k

ffiffiffiffiffiffiffiffiffi
16ξ0

p kðαÞkðmþ2n−3jÞΓðn− jÞΓð2j−kÞ
smþ2n
1 ΓðkÞj!ðm− jÞ!ðj−kÞ!ðn−mÞ! ;

is positive for n ≥ m. Note that in the sum, ð−1Þkþm spoils

the definite sign of BðlÞ
n;mðs1Þ. We can search for χðr;mÞ

n ðμ; δÞ,
such that

Xm
r¼0

χðr;mÞ
n ðμ; δÞBðlÞ

n;rðs1Þ ¼ UðαÞ
n;m;mC

ðαþmÞ
l−m

�
2μ

3δ
þ 1

�
≥ 0;

for m ≤ n. A solution is easily found using the following
recursion relation:

χðr;mÞ
n ðμ; δÞ ¼

Xm
j¼rþ1

ð−1Þjþrþ1χðj;mÞ
n

UðαÞ
n;j;rð2μ3 þ δÞ

UðαÞ
n;r;rð2μ3 þ δÞ

;

with χðm;mÞ
n ðμ; δÞ ¼ 1. Using the recursion relation, one

can check that [23] χðr;mÞ
n > 0, for n ≥ m. Then Eq. (4)

leads to [24]

Xm
r¼0

χðr;mÞ
n ðμ; δ ¼ 0ÞWn−r;r ≥ 0; ð5Þ

which we will refer to as nonperturbative constraints to
differentiate from the EFT constraints to be derived next. In
order to derive EFT bounds, we start with Eq. (4) and write

Wðδ0Þ
n−m;m≡

Z
∞

δ0þ2μ=3

ds1
s1

Φðs1Þ
X∞
l¼0

ð2lþ2αÞalðs1ÞBðlÞ
n;mðs1Þ

ð6Þ

for n ≥ 1, which defines for us the Wilson coefficients and
are the W’s in Eq. (4) when δ0 ¼ 0. In such cases, we can
show that

Xm
r¼0

χðr;mÞ
n ðμ; δ0ÞBðlÞ

n;r

�
δþ 2μ

3

�
≥ 0 ð7Þ

for δ ≥ δ0. This leads to positivity constraints

Xm
r¼0

χðr;mÞ
n ðμ; δ ¼ δ0ÞWðδ0Þ

n−r;r ≥ 0; ð8Þ

for μ ≥ 0, δ0 ≥ 0, m ≤ n. Since BðlÞ
n;0ðδþ 2μ=3Þ ¼

f½2CðαÞ
l ð2μ=3δþ 1Þ�=½πðδþ 2μ=3Þ2n�g, we have

Wðδ0Þ
n;0 ≤

1

ðδ0 þ 2μ
3
Þ2W

ðδ0Þ
n−1;0: ð9Þ

Our expressions are in agreement with the limited number
of cases known in the literature [14,16,17] except that our
derivation is manifestly crossing symmetric from the start
and admit a straightforward generalization [25].
An immediate application of our general formulas is the

examination of the n ≫ m limit. We find simply

Xm
r¼0

nm−r

ðm − rÞ!ðδ0 þ 2μ
3
Þm−r

Wðδ0Þ
n−r;r

Wðδ0Þ
n;0

≥ 0; ð10Þ

for n ≫ m. We have checked that tree level type II string
theory, to be discussed below, respects this.
Null constraints.—To derive lower bounds, we make use

of the n < m vanishing conditions arising from Eq. (4). In
the large δ limit, we have [26]

BðlÞ
n;mðδÞ¼CðαÞ

l ð1Þ
π

Dðn;mÞ
l;α

δ2nþm þO

�
μ

δ2nþmþ1

�
;

Dðn;mÞ
l;α ¼

Xm
j¼0

ð−4Þjð−l
2
Þjðαþ l

2
Þj

ðαþ 1
2
Þj

ð3j−m−2nÞΓðm−nÞ
j!ðm− jÞ!ðj−nÞ! :

Then in the limit when δ0 ≫ μ we have [27]

Z
∞

δ0

ds1
sαþ1=2
1

X∞
l¼2

ð2lþ2αÞalðs1Þ
CðαÞ
l ð1Þ
π

Dðn;mÞ
l;α

s2nþm
1

¼ 0: ð11Þ

for m>n, n ≥ 1. For example m ¼ 2, n ¼ 1 gives Dð1;2Þ
l;α ¼

f2lðlþ2αÞ½−11−10αþ2lðlþ2αÞ�=ð2αþ1Þð2αþ3Þg,
which was first derived in Ref. [16] from fixed-t dispersion
relations [28]. Once these null constraints are in place, a
judicious use of Cauchy-Schwarz inequality as used in
Ref. [16], or a more constraining numerical argument used
in Ref. [17] can be pursued to derive lower bounds. The
existence of such bounds was originally emphasized in
Ref. [29]. Our approach gives completely general expres-
sions for the independent null constraints.
Applications.—We will now consider two applications.

The first application will make use of the n ≥ m constraints
while the second will use the n < m constraints arising
from Eq. (4).
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Tree level type II superstring theory.—The four dilaton
type II superstring tree amplitude is given by [18]

Mðs1; s2Þ ¼ −
Γð−s1ÞΓð−s2ÞΓðs1 þ s2Þ

Γðs1 þ 1ÞΓð−s1 − s2 þ 1ÞΓðs2 þ 1Þ :

We consider the amplitudeMðclÞ obtained after subtracting
out the massless pole −1=½s1s2ðs1 þ s2Þ�. We can easily
compute the Wp;q, for example [18], W0;0 ¼ 2ζð3Þ,
W0;1 ¼ −2ζð3Þ2,W0;2 ¼ 2

3
½2ζð3Þ3 þ ζð9Þ�,W1;0 ¼ 2ζð5Þ,

W1;1 ¼ −4ζð3Þζð5Þ. Suppose we are given the first few
terms in the derivative expansion. Then, can we say where
the first massive string pole would occur? More precisely in
Eq. (6), what is the maximum δ0 we can use? Using the
methods in this Letter, we can address this question.
From m ¼ 1, n ¼ 1 (6 derivatives) condition (8)

(μ ¼ 0) gives us ½3ζð5Þ=δ0� − 2ζð3Þ2 > 0, which implies
δ0 < 1.07644. Similarly from other conditions, we can

show that δ0 < δðmaxÞ
0 . In Fig. 1, we have shown that for

higher constraints [30], the δðmaxÞ
0 converges towards 1,

which is exactly the location of the first massive pole.
Bound on total scattering cross section.—Now, we will

exploit the null constraints arising from m > n in Eq. (4) to
bound total scattering cross sections. We will be in d ¼ 4 or
α ¼ 1=2 and we will use the standard notation s ¼ s1 þ
4=3 with μ ¼ 4. The null constraints read

Z
∞

4

ds
s− 4

3

ΦðsÞ
X∞
l¼2n

ð2lþ1ÞalðsÞBðlÞ
m;n

�
s−

4

3

�
¼ 0; ð12Þ

where ΦðsÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s=ðs − 4Þp

. for m > n, n ≥ 1. For
mþ n ≤ l, m > n, n ≥ 1 we can verify that

BðlÞ
m;nðs − 4

3
Þ ≥ 0. Then we can write (12) as

Z
∞

4

ds
s − 4

3

ΦðsÞ
XLmax

l¼2n

ð2lþ 1ÞalðsÞBðlÞ
m;n

�
s −

4

3

�
≤ 0; ð13Þ

for mþ n ≤ Lmax, m > n, n ≥ 1. We have placed the
contributions arising from l ≥ Lmax þ 2 on the right
which gives the inequality. From unitarity, we
know that 0 ≤ alðsÞ ≤ 1. The inequalities (13) impose
further conditions on the alðsÞ. We convert the
integral over s in Eq. (13) as a sum by defining
sðkÞ ¼ 4þ k½ðsmax − 4Þ=Nmax�. Using the constraints
(13), we want to bound the total scattering cross section
σðsÞ [31]

σðsÞ ¼ 16π

s − 4

X∞
l¼0

ð2lþ 1ÞalðsÞ ≈
16π

s − 4

XLmax

l¼0

ð2lþ 1ÞalðsÞ:

ð14Þ

We maximize the value of ðs − 4Þ=16π × σðsÞ ¼
σ̄ ¼ PLmax

l¼0 ð2lþ 1ÞalðsÞ. The bound is shown in Fig. 2
for various [34] Lmax ¼ 36, 46, 60. A fit with σ̄0 ×
slog2ðs=s0Þ can be found. The Lmax ¼ 36 gives fit values
σ̄0 ¼ 0.29, s0 ¼ 0.128, similarly Lmax ¼ 60 gives fit
values σ̄0 ¼ 0.22, s0 ¼ 0.066. The convergence with
the spin sum is suggested by the figure but appears to
be slow for higher values of s. Also it is clear that the σ̄
found using a typical S matrix living on the boundary of
the so-called river arising from the S-matrix bootstrap
[35] or even the lake boundary in Ref. [36], is far below
the numerical bound presented.
Note that Froissart bound [37], i.e., σ̄ ≲ ðs=16Þlog2ðs=s0Þ

(which is not valid for lower value of swe are considering) is
below the numerical bound. The main utility of our
numerical bound is that it is valid for any s ≥ 4 unlike
the Froissart bound which is valid for s ≫ 4. It will be
fascinating to derive analytic bounds using the present
method and see if a stronger than Froissart bound is possible
at higher energies. In existing derivations of the Froissart
bound, the role of crossing symmetry has not been explored.

FIG. 2. The bound on σ̄ðsÞ using constraints (13) with
Lmax ¼ 36, 46, 60. The black dashed line is the Froissart bound
on σ̄. The red line is maximum σ̄ obtained using the pion
bootstrap in Ref. [35].

FIG. 1. δðmaxÞ
0 vs 2ð2nþmÞ, the derivative order, for m ¼ 1, 2,

3, 4, 5.
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We derive a simple analytic bound in the Supplemental
Material [21].
Feynman block expansion of amplitude.—We will now

address how the structure of the Feynman diagram expan-
sion emerges from our analysis. Given the partial wave
expansion of the s-channel discontinuity, we can write the
amplitude as

Mðs1;s2Þ¼α0þ
1

π

Z
∞

2μ=3

X∞
l¼0

dσ
σ
Hðσ;s1;s2;s3Þ

�
Φðσ;αÞð2lþ2αÞ alðσÞ

ðσ− 2μ
3
ÞlQlðσ;sðþÞ

2 ðσ;aÞÞ
�
;

ð15Þ
where Qlðs1; s2Þ ¼ ðs1 − 2μ=3ÞlCðαÞ

l ½1 þ 2ðs2 þ μ=3Þ=
ðs1 − 2μ=3Þ�. Let us refer to HQl as the Dyson block—
note that this block has nonlocal negative powers of x
which should cancel on using the null constraints. A natural
way to proceed would be to use a basis which has these
spurious negative powers of x removed at the onset. This
leads us to define the Feynman block

MF
l ðσ; s1; s2Þ ¼

X3
i¼1

MðiÞ
l ðσ; s1; s2Þ þMðcÞ

l ðσ; s1; s2Þ;

where the s-channel part of the Feynman block is

Mð1Þ
l ðσ; s1; s2Þ ¼ Qlðs1; s2Þ

�
1

σ − s1
−
1

σ

�
:

The t, u channel are given byMð2Þ
l ðσ;s1;s2Þ¼Mð1Þ

l ðσ;s2;s3Þ,
Mð3Þ

l ðσ;s1;s2Þ¼Mð1Þ
l ðσ;s3;s1Þ. MðcÞ

l ðσ; s1; s2Þ are contact
terms involving polynomials of si ’s. To find this write

DlðσÞ ¼
1

σ
Qlðσ; sðþÞ

2 ÞHðσ; s1; s2; s3Þ −
X3
i¼1

MðiÞ
l ðσ; s1; s2Þ:

For example, Dl¼2ðσÞ¼½ðxbð2Þ0;2Þ=ða−σÞ�þ½xðbð2Þ0;2þ
2bð2Þ2;0Þ�=σ¼2xbð2Þ2;0=σ−yb

ð2Þ
0;2=ðσÞ2−ðxbð2Þ0;2Þ

P∞
n¼2a

nðσÞ−n−1,
where bðlÞn;m ¼ ð1=n!m!Þ∂n

s1∂m
s2 ½Qlðs1; s2Þ�. We throw away

negative powers in x (nonlocal terms), which gives

MðcÞ
l¼2ðσ; s1; s2Þ ¼

2xbð2Þ2;0

σ
−
ybð2Þ0;2

σ2
; ð16Þ

which is the polynomial form of the contact term. This can
be repeated for any l. In general, we can write the Feynman
block expansion of an amplitude

Mðs1; s2Þ ¼ α0 þ
1

π

X∞
l¼0

Z
∞

2μ=3

dσ

ðσ − 2μ
3
Þl

× ðΦðσ; αÞð2lþ 2αÞalðσÞMF
l ðσ; s1; s2ÞÞ:

ð17Þ

This demonstrates how the structure of the Feynman
diagram expansion, involving exchanges and contact dia-
grams, emerges from the dispersion relation. Equation (15)
converges for −6.71μ < a < 2μ=3 [6]. Thus, expanding
Eq. (15) around a ¼ 0 gives a convergent representation in
anxm powers. The difference between Eqs. (17) and (15)
are the termsm < n in the latter. Removing these will leave
us with a convergent representation (17) around a ¼ 0—
see Supplemental Material [21] for further checks.
Discussion.—The crossing symmetric dispersion rela-

tion approach, presented in this Letter, promises to open up
a new and efficient way to study field theories. We saw how
the picture of Feynman diagrams emerges from the cross-
ing symmetric approach; seeing this using the fixed-t
dispersion relation is impossible as crossing symmetry is
imposed as a constraint. It will be very interesting to
connect the ideas and techniques in this Letter with the
“EFT-hedron” picture in Ref. [39]. Another place where we
expect these crossing symmetric dispersion relations to
play an important role [40] is the formulation of the dual
S-matrix bootstrap in higher dimensions. So far, an explicit
attempt has only been made in two dimensions [41].
On the CFT side, we have shown in Ref. [12] how the

manifestly crossing symmetric method extended to CFT
Mellin amplitudes leads to the sum rule constraints arising
from the two-channel dispersion relation presented in
Refs. [3,4]. Furthermore, the CFT generalized null con-
straints admit a straightforward derivation and are needed
to show the equivalence. This suggests that the manifestly
crossing symmetric dispersion relation will not only be
more systematic but will have more constraints than what is
easily derivable in the two-channel symmetric approach.
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