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The Neutron Star Interior Composition Explorer (NICER) recently measured the mass and equatorial
radius of the isolated neutron star PSR J0030+0451. We use these measurements to infer the moment of
inertia, the quadrupole moment, and the surface eccentricity of an isolated neutron star for the first time,
using relations between these quantities that are insensitive to the unknown equation of state of
supranuclear matter. We also use these results to forecast the moment of inertia of neutron star A in
the double pulsar binary J0737-3039, a quantity anticipated to be directly measured in the coming decade
with radio observations. Combining this information with the measurement of the tidal Love number with
LIGO/Virgo observations, we propose and implement the first theory-agnostic and equation-of-state-
insensitive test of general relativity. Specializing these constraints to a particular modified theory, we find
that consistency with general relativity places the most stringent constraint on gravitational parity violation
to date, surpassing all other previously reported bounds by 7 orders of magnitude and opens the path for a
future test of general relativity with multimessenger neutron star observations.
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Introduction.—Neutron stars are some of the most
extreme objects in nature. Their mass (typically around
1.4 M⊙) combined with their small radius (between
10–14 km) result in interior densities that can exceed
nuclear saturation density (ρ ≥ 2.8 × 1014 g=cm3), above
which exotic states of matter can arise [1]. Neutron stars
are, next to black holes, the strongest gravitational field
sources known, with typical gravitational potentials that are
5 orders of magnitude larger than that of the Sun. These
properties make neutron stars outstanding laboratories to
study both matter and gravity in situations out of reach in
terrestrial and Solar System experiments.
Our current poor understanding of the supranuclear

equation of state translates, via the equations of stellar
equilibrium, to a large variability on observable properties
of neutron stars, such as their masses and radii [2]. This
variability increases if one lifts the assumption that Einstein’s
theory of general relativity is valid in the strong-gravity
environment of neutron star interiors [3]. Modifications to
general relativity generically predict new equations of stellar
equilibrium, which, when combined with uncertainties on
the nuclear equation of state, jeopardize attempts to test
Einstein’s theory with isolated, neutron star observations.
One possibility to circumvent this issue is to explore

whether relations between neutron-star observables that are

insensitive to either (or both) the equation of state and
the gravitational theory exist. Fortunately, they do. For
instance, when properly nondimensionalized, the moment
of inertia (I), the rotational quadrupole moment (Q), and
the tidal Love number (λ) of neutron stars show a
remarkable degree of equation-of-state insensitivity, at a
level below 1% [4,5]. These “I-Love-Q” relations also exist
in some modified theories of gravity, although they are
different from their general relativity counterparts [6].
We here combine the first measurements [7,8] by

NICER [9] of both the mass (M) and equatorial radius
(Re) of the isolated pulsar PSR J0030+0451 [10,11]
with known equation-of-state insensitive relations involv-
ing the compactness C ¼ GM=ðRec2Þ (see, for instance,
Refs. [12–15]) to infer a number of astrophysical and
theoretical physics consequences. Before doing so, let us
explain how these relations are obtained.
Quasiuniversal relations.—Neutron stars can have short

rotation periods of the order of milliseconds, so their
surfaces are oblate instead of spherical. The inclusion of
this effect is of critical importance to accurately model the
thermal x-ray waveform that NICER observes, since the x
rays are produced by hotspots at the star’s surface [16,17].
The canonical approach to model relativistic rotating stars
was developed in the 1970s [18,19]. In this approach, the
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star’s rotation is treated as a small perturbation
ε ¼ f=f0 ≪ 1, involving the star’s rotation frequency f
and its characteristic mass-shedding frequency
f0 ¼ ðGM=R3

eÞ1=2=ð2πÞ. Rotating stars are then found
by perturbing in ε an otherwise nonrotating star, which
can be obtained by solving the Tolman-Oppenheimer-
Volkoff equations [20]. This slow-rotation approximation
is well justified for most neutron stars with astrophysically
relevant spins. Even for a prototypical millisecond pulsar
with f ¼ 700 Hz, M ¼ 1.4 M⊙, and Re ¼ 11 km, one has
ε ¼ 0.37. In the case of PSR J0030+0451, its rotation
frequency is known to be f⋆ ¼ 205.53 Hz [10,11], so
ε⋆ ¼ 0.14, when one uses the best-fit M and Re values
obtained by NICER [7,8]. Henceforth, a “⋆” indicates
observables associated with PSR J0030+0451.
Using this technique, we numerically calculated over a

thousand neutron star solutions to order ε2 in this
perturbative scheme, using a broad set of 46 different
equations of state [21,22], as detailed in the Supplemental
Material [23]. From these solutions, we then numerically
computed the moment of inertia I, the rotational quadru-
pole moment Q, the surface eccentricity e, and the
electric-type, l ¼ 2, tidal Love number λ, which is the
dominant parameter in the description of tidal effects in
the late inspiral of neutron star binaries [41–43].
We nondimensionalized these quantities through division
by the appropriate factors of M and dimensionless
spin χ ¼ ð2πf0ÞGĪM=c3, namely: Ī ¼ c4I=ðG2M3Þ,
Q̄ ¼ −c4Q=ðG2M3χ2Þ and λ̄ ¼ c10λ=ðGMÞ5. The surface
eccentricity e is dimensionless by definition, given in
terms of the star’s equatorial Re and polar Rp radii as
e ¼ ½ðRe=RpÞ2 − 1�1=2 [14]. The relations between these
nondimensional quantities are strongly insensitive to the
equation of state. Because of the small value of ε⋆ we can
neglect higher order in spin corrections in this expression.
The first step in using the approximately universal

relations on NICER’s first observation is to derive equa-
tion-of-state-insensitive relations between the observables
fĪ; Q̄; λ̄; eg, with respect to the compactness C. Details of
these “C relations” are given in the Supplemental Material
[23]. Our plan of attack is then clear: use the publicly
available Markov chain Monte Carlo (MCMC) M-Re
samples [44,45] for the best-fit model inferred by two
independent analysis [7,8] of the NICER data [46].
Although each group modeled the surface hotspots differ-
ently and used different sampling methods, their results are
consistent with each other. Here we use the results for the
three-hotspot model inferred by Miller et al. [8] and the
favored single temperature, two-hotpot STþ PST model
from Riley et al. [7] to obtain a posterior distribution for the
compactness, and then use the approximately universal
relations to infer other astrophysical quantities. We detail
this procedure next.
Astrophysical implications.—We begin by constructing a

posterior distribution PðCjNICERÞ for the compactness C

of PSR J0030+0451, using the MCMC chains [44,45].
With this posterior in hand, we then use the C relations to
inferred posterior distributions for fĪ; λ̄; Q̄; eg.
The implementation of such an inference procedure

requires a particular scheme, and we here follow a proposal
that accounts for the approximately universal nature of the
relations [22]. In this scheme, the maximum relative error
of each fitting function defines the half width of the 90%
credible interval of a Gaussian distribution centered at each
fitted value. The posterior distribution for each dimension-
less quantity is then calculated using the corresponding C
relation and the posterior distribution of the compactness,
after marginalizing over the latter. From these posteriors
and using the same procedure described above, we can also
construct posteriors for the dimensionful versions of these
quantities by a change of variables, marginalize over the
nuisance variables mass M and radius Re, and then do a
final rescaling of the posterior by ε (¼ 0.14) for the surface
eccentricity e and by ε2 for the rotational quadrupole
moment Q. We refer to the Supplemental Material for
details [23].
The resulting mean and 1σ intervals of these parameters

(both the nondimensionalized and the dimensionful ver-
sions) are shown in Table I; see the Supplemental Material
[23] for plots of the inferred posteriors. The reported
confidence intervals in all of these quantities account for
both the approximate nature of the universal relations and
the uncertainties in NICER’s observation. These results are
the first inferences on the moment of inertia, the surface
eccentricity, the Love number, and the quadrupole moment
of an isolated neutron star.
We can also use NICER’s observation combined with the

I-C relation to estimate the moment of inertia of PSR
J0737-3039A (I1.3381), where the subscript refers to this
pulsar’s measured mass of M ¼ ð1.3381� 0.0007ÞM⊙
[47]. The double pulsar J0737-3039 is expected to provide

TABLE I. Inferred properties of PSR J0030+0451 using equa-
tion-of-state-insensitive relations combined with the MCMC
samples by Miller et al. [44] and Riley et al. [45]. We report
the values within 1 standard deviation from the mean, represent-
ing approximately 68% confidence intervals. These values are the
first inferences of the moment of inertia, the eccentricity, the Love
number, and the quadrupole moment of an isolated neutron star.

Parameter Miller et al. Riley et al.

Ī⋆ (10) 1.31þ0.13
−0.11 1.42þ0.26

−0.19

λ̄⋆ (102) 4.97þ1.92
−1.28 6.75þ5.52

−2.69

Q̄⋆ 5.92þ0.73
−0.61 6.50þ1.38

−1.03

I⋆ (1045 g cm2) 1.71þ0.64
−0.48 1.42þ0.81

−0.53

Q⋆ (1043 g cm2) 1.49þ0.63
−0.45 1.27þ0.74

−0.49

e⋆ð10−1Þ 1.56þ0.25
−0.21 1.58þ0.29

−0.28
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the first direct neutron star measurement of the moment of
inertia [48]. This system is the only double-pulsar observed
to date, which makes it an unique laboratory for binary
stellar astrophysics [49,50]. Moreover, an accurate meas-
urement of I1.3381 in combination with its known mass is
expected to strongly constrain the nuclear equation of state
around once and twice nuclear saturation density [51].
To predict the moment of inertia of PSR J0737-3039A

from NICER’s observation of PSR J0030+0451, we first
need to obtain an estimate for the compactness C1.3381 of
PSR J0737-3039A. This can be approximated by
the substitution fM;Reg ↦ fM0 ¼ 1.3381 M⊙; Reg at
each MCMC sample [44] and then computing CM0

.
This yields an approximation to the distribution of
compactness for a system with mass M0, which is
assumed known and identical to PSR J0030+0451.
This procedure is only justified as long as M0 is very
close to M⋆, as in the case of PSR J0737-3039A, whose
inferred mass (M0 ¼ 1.3381þ0.0007

−0.0007 M⊙) [47] is within
the 1σ credible interval of both NICER’s mass inference
(M⋆ ¼ 1.34þ0.15

−0.16M⊙ [7] and M⋆ ¼ 1.44þ0.15
−0.14M⊙ [8]).

With an estimate of the compactness of PSR J0737-
3039A, we can now obtain a prediction for
PSR J0030+0451’s moment of inertia repeating the
procedure applied to PSR J0030+0451. Figure 1
shows our result using both NICER MCMC samples;
IMiller et al:
1.3381 ¼ 1.64þ0.52

−0.37 × 1045 g cm2, and IRiley et al:1.3381 ¼
1.68þ0.53

−0.48 × 1045 g cm2, together with two other indepen-
dent predictions [52,53]. All predictions are consistent
with one another. The anticipated future independent
measurement of I1.3381 from continued radio timing of

PSR J0737-3039A will provide another test for nuclear
theory and enable an I-Love test of gravity, the latter of
which we define next.
Theoretical physics implications.—The combination of

the inference of I with NICER data described above,
and the independent measurement of λ [55] by the
LIGO/Virgo Collaboration from the binary neutron-star
merger GW170817 [56], allows for the first implementa-
tion of an I-Love test [4]. This test would be the first
multimessenger test of general relativity with neutron star
observables.
The idea of an I-Love test is as follows [4,5] (see Fig. 2).

Consider two independent inferences of Ī1.4 and λ̄1.4 for a
1.4 M⊙ neutron star. In the (Ī, λ̄) plane, these measure-
ments yield a 90% confidence error box. If the I-Love
relation in general relativity, including its small equation-
of-state variability, does not pass through this error box,
then there is evidence for a violation of Einstein’s theory,
regardless of the underlying equation of state. Moreover, if
any theory of gravity predicts an I-Love curve that also
does not pass through this error box for a given value of its
coupling constants, then the I-Love test places a constraint
on the couplings of this theory, which is also independent
of the equation of state.
Such a test, however, requires the inference of the tidal

deformability and the moment of inertia of a neutron star of
the same mass. The LIGO/Virgo Collaboration used
gravitational wave data to infer the tidal deformability
of a 1.4 M⊙ neutron star to be λ̄1.4 ¼ 190þ390

−120 at 90%

FIG. 1. Predictions for the moment of inertia of PSR J0737-
3039A. We compare our predicted I1.3381 using both the MCMC
samples from Miller et al. [44] and Riley et al. [45] against:
(i) Landry and Kumar [52] (LK18), which used binary Love [54]
and I-Love relations with the tidal-deformability constraints from
binary neutron-star merger GW170817 [55], and (ii) Lim et al.
[53] (LHS19) which carried out Bayesian modeling of a number
of equations of state. The larger moment of inertia that we predict
is due to the larger radii favored by an M ≈ 1:4M⊙ neutron star
by NICER’s observation relative what is inferred by the two other
methods, as I ∼MR2

e.

FIG. 2. Multimessenger test of general relativity using the
parametrized I-Love relation. The vertical (horizontal) lines
delimit the 90% confidence region (shaded) for λ̄1.4 [57]
(Ī1.4, this work), while the circle marks the median (190,
14.6). The solid black line corresponds to the I-Love relation
in general relativity [Eq. (1)] and is consistent with the inferred
values of Ī1.4, λ̄1.4 at 90% confidence. Starting from b ¼ −2 and
moving clockwise, we show the parametrized I-Love curves
ðb; βcritÞ, where b ∈ ½−2; 5� and βcrit is the critical value of β
above which the parametrized I-Love relation [Eq. (2)] fails to
pass by the 90% confidence region in the plane. Here we used the
value of Ī1.4 inferred using the results by Miller et al. [8,44]. We
found similar results using the results by Riley et al. [7,45] (see
Supplemental Material [23]).
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confidence [57], obtained under the assumptions that the
binary components were described by the same equation of
state and were slowly spinning. We can use NICER’s data
to infer the moment of inertia of a 1.4 M⊙ neutron star with
the same techniques we used to predict the moment of
inertia of PSR J0737-3039A. For concreteness, we use the
results from Miller et al. [8,44], but we verified (see the
Supplemental Material [23] for detail) that our conclusions
are essentially the same had we used the results from
Riley et al. [7,45]. We find that C1.4 ¼ 0.159þ0.025

−0.022 and
Ī1.4 ¼ 14.6þ4.5

−3.3 at 90% confidence. An important under-
lying assumption behind both inferences is that general
relativity is the correct theory of gravity. The rationale
behind this test is detailed in the Supplemental
Material [23].
Since carrying out such a test on a theory-by-theory basis

would, in general, be complicated and time consuming, we
here develop and implement a useful parametrization of the
I-Love test. From Newtonian gravity, we know that Ī
scales with C−2, whereas λ̄ scales with C−5. Therefore,
Ī ¼ CĪ λ̄λ̄

2=5, withCĪ λ̄ ≈ 0.52 a constant that depends on the
equation of state very weakly [5]. This calculation can be
extended, systematically, in a post-Minkowskian
expansion, i.e., an expansion in powers of C ≪ 1 [58].
The outcome is that both Ī and λ̄ can be written as a power
series in C and then be combined (as just described in
the Newtonian limit) to obtain Ī ¼ Īðλ̄Þ. The resulting
I-Love relation has the same degree of equation-of-state
independence as the original I-Love relation [4]. For our
neutron star catalog, a parametrization in general relativity
of the form

ĪGR ¼ λ̄2=5ðc0 þ c1λ̄−1=5 þ c2λ̄−2=5Þ; ð1Þ

with c0 ¼ 0.584, c1 ¼ 0.980, c2 ¼ 2.695, is sufficient to
reproduce our numerical data with mean relative error
hϵĪi ≤ 2 × 10−3. The prefactor λ̄2=5 is the Newtonian result,
while the powers of λ̄−1=5 inside parenthesis are relativistic
(post-Minkowskian) corrections because λ̄−1=5 ∝ C ≲ 0.2.
Given this, we then propose a minimal deformation of the
Einsteinian parametrization in Eq. (1) of the form

Īp ¼ ĪGR þ βλ̄−b=5; β ∈ Rþ; b ∈ Z; ð2Þ

where β and b are deformation parameters that control the
magnitude and type of the deviations from general relativity
in the I-Love relation, respectively. Such a parametrization
is similar to that successfully used in gravitational-wave
tests of general relativity by the LIGO/Virgo Collaboration,
the parametrized post-Einsteinian framework [59].
We performed such a test of general relativity through

the procedure described earlier. First, we see that the I-Love
relation in general relativity does indeed pass this null-test
and it is consistent with the error box. Second, we

considered b ∈ ½−2; 5�, where the lower limit is set by
requiring no deviations at the Newtonian level and the
upper limit is set for simplicity. We then fixed b and
calculated what the corresponding value of β ¼ βcrit is,
above which the parametrized I-Love relation (2) would be
in tension with the inferred ðĪ1.4; λ̄1.4Þ region at 90% con-
fidence. Our results are summarized in Fig. 2, where the
numbers in parenthesis correspond to ðb; βcritÞ. We stress
that our results for b ≤ 0 are of course dependent on the
posterior used for λ̄1.4. If one treated the tidal deformabil-
ities as independent free parameters in the waveform model
[56], then the λ̄1.4 posterior would not have a lower limit,
allowing all curves with b ≤ 0 to be consistent with both
observations.
With these theory-agnostic constraints in hand, we can

now map them to specific theories and place constraints on
their coupling parameters. As an example, let us consider
dynamical Chern-Simons gravity, a theory that modifies
general relativity by introducing gravitational parity
violation [60]. This theory has found applications to
several open problems in cosmology, such as the matter-
antimatter asymmetry and leptogenesis [61–64]. It also
arises in several approaches to quantum gravity, such as
string theory [65] and loop quantum gravity [66–68].
Mathematical well-posedness requires the theory to
be treated as an effective field theory [69]. In this
formalism, one works in a small-coupling approximation
ζ≡ 16πα2R−4 ≪ 1, where R ¼ ½c2R3

e=ðGMÞ�1=2 is the
curvature length scale associated with a neutron star (in
our case), and where α is a coupling constant with units of
length squared, such that ζ is dimensionless. This theory
modifies Einstein’s only when gravity is strong, and thus, it
passes all Solar System constraints, being only extremely
weakly constrained by Gravity Probe B and the LAGEOS
satellites, and table-top experiments, to α1=2 ≤ 108 km
[70–72]. This theory has also evaded gravitational-wave
tests [73], making it a key target to test the constraining
power of our new I-Love test.
Let us now map the theory-agnostic deformation of the

I-Love relations in Eq. (2) to dynamical Chern-Simons
gravity, though this methodology could be applied to other
theories as well. As we discuss in the Supplemental Material
[23], the I-Love relation in this theory can be described by
Eq. (2) with bCS ¼ 4 and βCS ¼ 6.15 × 10−2ξ̄, where
ξ̄ ¼ 16πα2=M4. We can now use our theory-agnostic con-
straints on β to place a constraint on α, the coupling constant
of dynamical Chern-Simons gravity. Using the constraint on
β when b ¼ 4, namely, βcrit ≤ 8.84 × 102, and applying
the mapping, yields βCS ¼ 6.15 × 10−2ξ̄ ≤ 8.84 × 102, or
simply

α1=2 ≤ 8.5 km; ð3Þ

at 90% credibility, if the theory is to be consistent with the
observational bounds on Ī1.4 and λ̄1.4. Using the mean value
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C1.4 ¼ 0.159, which implies the mean equatorial radius
R1.4 ¼ 13.0 km, we also find that ζ ≤ 0.23 when using
Eq. (3), implying that the small-coupling approximation is
indeed satisfied. This bound is 7 orders of magnitude
stronger than any previous constraints and it is unlikely to
be improved upon with foreseeable gravitational-wave
observations [74].
Conclusions and outlook.—The NICER’s observation of

PSR J0030+0451 allows the extraction of new astrophysi-
cal and theoretical physics inferences when one uses
equation-of-state-insensitive relations. We have here shown
the first inferences of the moment of inertia, the quadrupole
moment, the surface eccentricity, and the Love number of
an isolated neutron star. We have also been able to perform
the first theory-agnostic and equation-of-state independent
test of general relativity by combining NICER’s and LIGO/
Virgo’s observations. This test, in turn, was leveraged to
produce the most stringent constraint on gravitational parity
violation, improving previous bounds by 7 orders of
magnitude. This robust methodology can be applied to
future multimessenger observations of neutron stars with
NICER and gravitational wave observatories, with impor-
tant implications to nuclear astrophysics and theoretical
physics.
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