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We present AI Poincaré, a machine learning algorithm for autodiscovering conserved quantities using
trajectory data from unknown dynamical systems. We test it on five Hamiltonian systems, including the
gravitational three-body problem, and find that it discovers not only all exactly conserved quantities, but
also periodic orbits, phase transitions, and breakdown timescales for approximate conservation laws.
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Introduction.—While machine learning has contributed
to many physics advances, such as improving the speed or
quality of numerical simulations, laboratory experiments
and astronomical observations [1–7], a more ambitious
goal is to design intelligent machines to make new
scientific discoveries such as physical symmetries [8–12]
and formulas via symbolic regression [13–17]. In this spirit,
the goal of the present Letter is to autodiscover conserva-
tion laws from trajectories of dynamical systems.
Physicists have traditionally derived conservation laws

in a model-driven way, such as when Poincaré proved [18]
that the 3D gravitational three-body problem has only
ten conserved quantities. In contrast, this Letter aims to
discover conservation laws in a data-driven way, using
only observed trajectory data as input while treating the
underlying dynamical equations as unknown.
To the best of our knowledge, the authors of [11,12] have

pursued the goal closest to ours, but with an orthogonal
approach detecting symmetry with an autoencoder and
Siamese neural networks, respectively, requiring hand-
crafted features precluding full automation and testing
on relatively simple examples. Other work linking con-
servation laws and machine learning [9,19–21] focus on
embedding physical inductive biases (such as the existence
of a Hamiltonian or Lagrangian) into machine learning, but
not the other way around to apply machine learning for
autodiscovery of conservation laws.
Our ambitious goal of automating conservation law

discovery is enabled by recent machine learning progress
[22] for samplingmanifolds, which are intimately related to
dynamical systems as summarized in Table I: viewing each
state as a point in a phase space RN , the topological closure
of the set of all states on a trajectory form a manifold
M ⊂ RN . Each conservation law removes one degree of
freedom from the dynamical system and one dimension
fromM, so the number of conserved quantities is simplyN
minus the dimensionality of M [23]. The local tangent
space of M represents all local displacements allowed
by conservation laws, while the space perpendicular to

the tangent space is spanned by gradients of conserved
quantities.
We introduce our notation and AI Poincaré algorithm in

the methods section. In the results section, we apply AI
Poincaré to five Hamiltonian systems to test its ability to
discover conserved quantities (numerically and symboli-
cally), periodic orbits, phase transitions, and conservation
breakdown timescales.
Method.—Problem and notation: Consider a dynamical

system whose state vector x ∈ RN evolves according to an
ordinary differential equation dx=dt ¼ fðx; tÞ for some
smooth function f. In physics, dynamical systems can often
be written with x as the concatenation of vectors of
generalized coordinates q and momenta p and N is even.
For the special case of Hamiltonian systems, important in
classical mechanics [23], there exists a Hamiltonian func-
tion H0ðq;pÞ such that

dpðiÞ

dt
¼ −

∂H0

∂qðiÞ ;
dqðiÞ

dt
¼ ∂H0

∂pðiÞ ði ¼ 1;…; kÞ: ð1Þ

Conservation laws are important in physics, common
examples including conservation of energy (H0), momen-
tum, angular momentum, Runge-Lenz vector, magnetic
moment, etc. We express a set of independent conservation
laws as Hj½xðtÞ� ¼ hj, j ¼ 0;…; n − 1, valid exactly or
approximately. Each conservation law can be understood
as a mathematical constraint that slices the original
n-dimensional phase space into a family of isosurfaces.

TABLE I. Manifold–dynamical system correspondence.

Manifold Dynamical system

Dimensionality reduction Conservation law
Tangent space Conserved quantity isosurface
Orthogonal space Gradients of conserved quantities
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We define the permissible state manifold (PSM) as
M≡ fx ∈ RN jHjðxÞ ¼ hjg, i.e., as the set of states
allowed by all conservation laws. It is clear that dimðMÞ ¼
N − n [23], since each conservation law removes one
degree of freedom from the system. In practice, however,
only trajectory data rather than the full PSM is observed,
which motivates us to define the “trajectory set” as
S ¼ fxðtÞjt ≥ 0g. If the system is ergodic, S will be
everywhere dense in M so that M is the closure S̄ of
S, implying the identity n ¼ N − dimðS̄Þ. This generalizes
even beyond traditional physics contexts: for example, if x
contains the pixel colors in a gray-scale video, then the
color of a pixel that always remains black is a conserved
quantity.
AI Poincaré: We present a machine learning algorithm,

AI Poincaré, that uses S to compute an estimator ŝ of the
dimensionality s≡ dimðS̄Þ, thus obtaining an estimator
neff ≡ N − ŝ of n. If neff > 0, it suggests the existence of
neff hitherto undiscovered conservation laws. If neff ¼ 0,
the system is not Hamiltonian since it lacks even a single
conserved quantity H0.
Although manifold learning is an active field and has

developed powerful tools to explore and visualize the
latent structure of low-dimensional submanifolds of
high-dimensional spaces [24–29], they either focus on
performance on downstream tasks (e.g., image or video
generation), where the dimensionality is a user-specified
input parameter, or perform not as well as the proposed
method here on our task. The Supplemental Material [30]
compares the performance with the principal component
analysis (PCA), autoencoder, and fractal methods. If we
had perfect noiseless samples forming a dense set S in M,
then we could simply determine the manifold dimension-
ality s as the rank (number of nonzero eigenvalues) of the
covariance matrix of the samples in an infinitesimal
environment of a random sample, where the manifold
can be approximated by a hyperplane. In practice, we
cannot probe infinitesimal scales because we have only a
finite number of points, yet we must avoid large scales
where manifold curvature is important; our method handles
these complications by treating dimensionality s as a
renormalized quantity that is a function of length scale L.
AI Poincaré consists of three modules, as illustrated in

Fig. 1(a): (1) preprocessing (prewhitening and optional
dimensionality reduction), (2) local Monte Carlo sampling
of M, and (3) linear dimensionality estimation from these
samples using PCA explained ratios. The prewhitening
performs an affine transformation such that the points in S
have zero mean and covariance matrix I, the identity
matrix. If any eigenvalues of the original covariance matrix
vanish, then the corresponding eigenvectors ei define
linear conserved quantities HiðxÞ ¼ ei · x, and we remove
these dimensions before proceeding. The Supplemental
Material [30] gives further technical details of the prepro-
cessing module.

Our module for Monte Carlo sampling the manifold
benefits from the neural empirical Bayes technique in the
machine learning literature [22]. It consists of two steps, as
illustrated in Fig. 1(b): (1) The walk step x ↦ y perturbs a
state vector x ∈ S by adding isotropic Gaussian noise n
with zero mean and covariance LI. (2) The pull step
y ↦ x0 pulls the “noisy” state y back toward the manifold.
We do this by training the parameters θ of a feed forward
neural network implementing a “pull function” Pθ mapping
RN to RN , minimizing the loss function

LossðθÞ ¼ 1

Ns

XNs

i¼1

jPθðyiÞ − xij22; ð2Þ

where Ns is the number of samples. Since the best the
neural network can do is learn to orthogonally project
points back onto the manifold, the pulled-back points
x0
i ≡ PθðyiÞ characterize the local tangent space when L

is appropriately chosen [22].
The Supplemental Material [30] provides further intu-

ition and illustrations regarding how the preprocessing
walk-pull steps work.
Explained ratio diagram: The output of the AI Poincaré

algorithm is the explained ratio diagram (ERD), showing
the fraction of variance explained by each principal
component (its eigenvalue divided by the eigenvalue
sum) as a function of noise length scale L, revealing the
dimensionality of M and hence the number of conserved
quantities. A typical ERD is shown in Fig. 1(c), revealing
three phases separated by phase transitions at La ≪ 1 and
Lb ∼ 1. In the intermediate phase La ≲ L≲ Lb, some
principal component(s) drop near zero and are identified
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FIG. 1. The AI Poincaré algorithm: (a) overall work flow,
(b) walk-pull Monte Carlo module, (c) typical explained ratio
diagram, with phase 2 revealing conserved quantities. PC denotes
principal component.
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as submanifold structure (conservation laws). In the other
two phases, all explained ratios are ∼1=n because the
Monte Carlo sample covariance matrix ∼I: on large scales
because almost the whole (prewhitened) manifold is
sampled and on small scales because of roughly isotropic
noise.
Results.—Numerical experiments: We test AI Poincaré

on trajectories from five well-studied Hamiltonian systems:
the 1D harmonic oscillator, 2D Kepler problem, double
pendulum, 2D magnetic mirror, and 2D three-body prob-
lem, as defined in Table II and illustrated in Fig. 2. We
compute trajectories for the five systems with a fourth-
order Runge-Kutta integrator at Nstep ¼ f103; 105; 106;
105; 2 × 105g time steps of size ϵ ¼ f10−2; 10−2; 10−3;
10−3; 10−3g, using the initial conditions listed in Fig. 2.
We parametrize the pull function Pθ as a feed forward
neural network with two hidden layers containing 256
neurons each and train it for each L using the Adam
optimizer [31] with learning rate 10−3 for 5000 steps. We
repeat the walkþ pull Monte Carlo process jumping 104

times from the trajectory midpoint.
Basic results: The resulting explained ratios (Fig. 2,

bottom) show a consistent valley around L ¼ 0.1, revealing
the number of conserved quantities. The number of con-
servation laws discovered by AI Poincaré is seen to agree
with the ground truth (Table II) for all five systems if we
simply define the criterion for conservation law discovery
as an explained ratio that is an order of magnitude below
baseline (0.1=N; dashed black line in the figure). For the
three-body problem, the first four conservation laws are

linear and hence discovered already in our preprocessing
step. As shown in the Supplemental Material [30], these
results are robust to changing the starting point for the
walkþ pull process, and outperform the PCA, autoen-
coder, and fractal methods for dimensionality estimation.
Symbolic formula discovery: Table II (right column)

shows that we can not only autodiscover that a conservation
law exists, but in many cases also a symbolic formula for it:
we did this by applying the AI Feynman symbolic
regression algorithm [16,17] to our trajectory data. Since
any function of a conserved quantity is also conserved, we
require some form of “gauge fixing” to make the symbolic
regression problem well posed. Here we simply require
states on two chosen trajectories to have conserved value 1
and 2; this approach can undoubtedly be greatly improved,
e.g., by requiring that gradient directions match those of
our pull function.
Phase transition discovery: We will now explore how AI

Poincaré can autodiscover not only exact conservation laws
as above, but also approximate ones, revealing physically
interesting phase transitions. There are many reasonable
ways of defining an effective number of conserved quan-
tities neff as a smooth function of the explained ratios wi.
Wewant each explained ratio wi to contribute 1 for small wi
and 0 for wi ≳ 1=N, so here we make the simple choice

neff ≡max
L

neffðLÞ; neffðLÞ≡
XN
i¼1

c½πNwiðLÞ�; ð3Þ

where cðxÞ≡ cos x if x < π=2, vanishing otherwise.
This is seen to agree well with our threshold criterion

FIG. 2. Five Hamiltonian systems used to test AI Poincaré: Harmonic oscillator, Kepler problem, double pendulum, magnetic mirror,
and three-body problem. d is the dimensionality of the Euclidean space, k is the number of bodies, N ≡ 2kd is the phase space
dimensionality, and n is the ground truth number of conservation laws. Bottom: the red dashed curve shows the effective number of
conserved quantities neff defined by Eq. (3), and the green region on the L axis shows L range that gets neff correct (after rounding to the
nearest integer). The horizontal dashed lines shows 1=N and 0.1=N; any principal component explaining less than a fraction 0.1=N of
the total variance at any L is considered evidence for a conservation law. IC denotes initial conditions.
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(Fig. 2, bottom). Below we fix L ¼ 0.1, instead of
maximizing over it to save computation time. Let us view
neff as an “order parameter” of the dynamical system
and consider phase transitions in the parameter space
spanned by timescale, initial conditions, and Hamiltonian
modifications.
For the Kepler problem, we generalize the inverse square

force to the form F ∝ r−ð2þϵÞ, jϵj ≪ 1. This causes the
previously conserved Runge-Lenz vector (the major axis
direction) to precess by an angle ∼ϵ per orbit [32], so that
its approximate conservation breaks down after∼ϵ−1 orbits.
AI Poincaré is seen to autodiscover this phase transition
[Fig. 3(a)] without using any of the aforementioned physics
knowledge.
The double pendulum is known to have a regular phase

at low energy and a chaotic phase at high energy [33], both
with neff ¼ 1 (conserving only total energy). We change the
initial conditions to θ1 ¼ θ2 ¼ θ0 and plot the dependence
of neff on θ0 [Fig. 3(b)], which is seen to reveal two
additional phases. (1) An interesting periodic orbit
(neff ¼ 3) is discovered at θ0 ≈ 65° (see inset figure), by
adjusting initial conditions to maximize neff . (2) For small
θ0, the small angle approximation allows the system to
be accurately linearized and decoupled into two noninter-
acting normal modes, whose energies are separately con-
served (neff ¼ 2).
The magnetic mirror is also known to have a regular

low-energy phase and a chaotic high-energy phase [34],
both with neff ¼ 1 (conserving only energy). We change
the initial conditions to _ρ ¼ _z ¼ v0=

ffiffiffi
2

p
and the depend-

ence of neff on v0 in Fig. 3(c) is seen to reveal two
additional phases. (1) An interesting periodic orbit
(neff ¼ 3) is discovered at v0 ≈ 1.0 (see inset figure).
(2) At low energy (small v0), the magnetic moment is
an adiabatic invariant, so neff ¼ 2.

For the three-body problem, we consider initial con-
ditions akin to a tight binary star pair orbiting a more distant
star. Figure 3(d) reveals that the local energy and angular
momentum of the tight binary are approximately conserved

TABLE II. Symbolic formulas for 10 of the 13 conservation laws that were discovered using AI Feynman.

System Conserved quantity Formula found?

Harmonic oscillator H ¼ 1
2
ðx2 þ _x2Þ Yes

Kepler problem H ¼ 1
2
ð_x2 þ _y2Þ −

�
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p �
Yes

Langular ¼ x_y − y_x Yes
A ¼ arg½Lð−_y; _xÞ − r̂� No

Double pendulum (Small angle) Hs ¼ 10θ21 þ 5θ22 þ _θ1
2 þ 1

2
_θ2

2 þ _θ1 _θ2 Yes
(Large angle) Hl ¼ −20 cos θ1 − 10 cos θ2 þ _θ1

2 þ 1
2
_θ2

2 þ _θ1 _θ2 cosðθ1 − θ2Þ No

Magnetic mirror H ¼ 1
2
ð_ρ2 þ _z2Þ þ 1

2
ðρ2 þ 1

5
z2 þ ρ2z2Þ Yes

Three-body problem H ¼ P
3
i¼1

m
2
ð_x2i þ _y2i Þ −m2ð 1

r12
þ 1

r13
þ 1

r23
Þ; m ¼ 5 × 106 No

xc ¼ 1
3
ðx1 þ x2 þ x3Þ Yes

yc ¼ 1
3
ðy1 þ y2 þ y3Þ Yes

_xc ¼ 1
3
ð_x1 þ _x2 þ _x3Þ Yes

_yc ¼ 1
3
ð_y1 þ _y2 þ _y3Þ Yes

Langular ¼
P

3
i¼1 xi _yi − yi _xi Yes

(a) (b)

(c) (d)

FIG. 3. AI Poincaré detection of phase transitions, approximate
conserved quantities and periodic orbits, using neff as an order
parameter. Four examples were tested: (a) Kepler problem,
(b) double pendulum, (c) magnetic mirror, and (d) three-body
problem.
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initially, increasing neff by two, until tidal interactions
with the distant star eventually cause this conservation to
break down.
Conclusions.—We have presented AI Poincaré, a

machine learning algorithm for autodiscovering conserved
quantities using trajectory data from unknown dynamical
systems. Tests on five Hamiltonian systems showed that it
autodiscovered not only the number of conserved quan-
tities, but also periodic orbits, phase transitions, and
breakdown timescales for approximate conservation laws.
AI Poincaré is universal in the sense that it does not require
any domain knowledge or even a physical model of how the
trajectories were produced. It may therefore be interesting
to apply it to raw experimental data, for example, measured
neuron voltages in C. elegans. Another promising future
direction is improved discovery of symbolic formulas for
the discovered conserved quantities by transferring learned
geometric information from AI Poincaré to AI Feynman,
e.g., by requiring that symbolic gradient directions match
those of our learned pull function.
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