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Degeneracies in the energy spectra of physical systems are commonly considered to be either of
accidental character or induced by symmetries of the Hamiltonian. We develop an approach to explain
degeneracies by tracing them back to symmetries of an isospectral effective Hamiltonian derived by
subsystem partitioning. We provide an intuitive interpretation of such latent symmetries by relating them to
corresponding local symmetries in the powers of the underlying Hamiltonian matrix. As an application, we
relate the degeneracies induced by the rotation symmetry of a real Hamiltonian to a non-Abelian latent
symmetry group. It is demonstrated that the rotational symmetries can be broken in a controlled manner
while maintaining the underlying more fundamental latent symmetry. This opens up the perspective of
investigating accidental degeneracies in terms of latent symmetries.
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Introduction.—Identifying the origin of spectral degen-
eracies in quantum systems is of fundamental importance
for the understanding and control of their structural and
dynamical properties. Degenerate states are at the heart of
spectacular phenomena like the Jahn-Teller effect [1] and
the quantum Hall effect [2,3] as well as the electromagnetic
response of, e.g., atoms or molecules [4,5] in general. In
lattice systems designed macroscopic degeneracies can
realize flat bands within a variety of setups including
optical lattices, photonic waveguide arrays, and super-
conducting networks [6]. Further, degeneracies in the form
of conical intersections of molecular potential energy
surfaces play a central role for ultrafast dynamical decay
processes [7,8] and are responsible, e.g., for molecular self-
repair mechanisms in photobiology [9].
When degeneracies occur in the energy spectrum, the

first place to seek their origin is commonly the group of
geometrical symmetry operations commuting with the
underlying Hamiltonian. Prominent examples for such
symmetries are the molecular point group in chemistry
or the space group in crystallography. If this group is non-
Abelian—that is, if at least two symmetry operations do not
commute with each other—it induces degeneracies of
multiplicities determined by the dimensions of the group’s
irreducible representations. More challenging is the reverse
question of assigning degeneracies to a symmetry group
with a physical significance [10,11]. A famous example of
a physically significant, yet not obvious, symmetry from
the early days of quantum theory is the SO(4) symmetry
leading to the conservation of the Runge-Lenz vector in the
hydrogen atom [12]. If no such physically meaningful
symmetry group can be found, the degeneracy is tradi-
tionally called accidental [13]. This often occurs for

systems with several or many degrees of freedom where
eigenenergies happen to coincide at some location in the
corresponding parameter space, intersections of molecular
potential energy surfaces being a typical example [14].
In this work, we promote a different viewpoint on assign-

ing degeneracies to symmetries of the system. Instead of
performing a symmetry analysis of theHamiltonian itself, we
do this for the effective Hamiltonian obtained from the
original one by reducing it onto a subsystem while retaining
the energy spectrum. We note that its core property—the
preservation of the energy spectrum—clearly distinguishes
this approach from thosewhich analyze the symmetries of an
effective model obtained by truncation or a mean-field
ansatz. Focusing on generic discrete models, we here show
how geometrical symmetries of the isospectrally reduced
Hamiltonian induce spectral degeneracies for the original
system. Such latent symmetries, as introduced recently in
graph theory [15], are generally not apparent in the original
system at hand. In fact, as we show here, they are directly
linked to corresponding local symmetries, though in all
powers of the original Hamiltonian. Navigating through the
proposed concepts, visualized by minimalistic examples, we
(i) show how non-Abelian latent symmetries are necessarily
induced by rotation symmetries of a real Hamiltonian, and
(ii) demonstrate that these latent symmetries, alongwith their
induced degeneracies, can be preserved even when breaking
the original rotational symmetry. Lastly, we link a special
case of latent symmetry to what we call here a generalized
exchange symmetry of the Hamiltonian.
Degeneracies from latent symmetries.—The concepts

and results developed in this work are valid for generic
setups described by a finite-dimensional matrix. This
matrix can be drawn from a wide range of physical
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platforms: It could represent a Bloch Hamiltonian of a
tight-binding lattice [16], a molecular Hückel Hamiltonian
[17,18], a multiport scattering matrix [19], or very gene-
rally the matrix H occurring in (linearized) dynamical
problems [20], such as coupled oscillators [21]. To convey
the main ideas in a transparent way, we will illustrate it by
means of minimalistic prototypical setups.
In order to reveal the latent symmetries of a general

complex matrix H, we will rely on a dimensional reduction
of H which preserves the eigenvalue spectrum. This
isospectral reduction is defined as [15,22]

RSðH; λÞ ¼ HSS −HSS̄ðHS̄ S̄ − λIÞ−1HS̄S; ð1Þ

whereby S is a set sites and S̄ denotes the complement set of
all other sites of the given setup. HSS and HS̄ S̄ denote the
respective Hamiltonians of the sub-systems consisting only
of the sites in S or S̄. HS̄S and HSS̄ represent the coupling
between the two sub-systems, and I is the identity matrix.
The isospectral reduction RSðH; λÞ is equivalent to an
effective Hamiltonian gained from a subsystem partitioning
of H [23], and its entries are rational functions of the
parameter λ.
A Hamiltonian H is latently symmetric if there exists an

isospectral reduction RSðH; λÞ with a symmetry, that is,
which commutes with a group of matrices fMg indepen-
dent of λ. We now demonstrate this concept by means of the
simple 6-site Hamiltonian H depicted in fig. 1(a). This
Hamiltonian illustrates the minimal prototype of a system
with non-trivial latent symmetry. H is parametrized by
three real coupling parameters hi ≠ 0, i ∈ f1; 2; 3g and two
on-site potentials v1, v2. The eigenvalue spectrum of H
contains two doubly degenerate eigenvalues for any choice
of these parameters. To explain these degeneracies in terms
of latent symmetries ofH, we reduce it by means of Eq. (1)
over S ¼ f1; 2; 3g. This yields the symmetric matrix

RS¼f1;2;3gðH; λÞ ¼

0
B@

a b b

b a b

b b a

1
CA; ð2Þ

with a ¼ v1 þ ðh21 þ h22=λ − v2Þ, b ¼ ðh1h2=λ − v2Þ þ h3.
A graphical representation of Eq. (2) is depicted in
Fig. 1(b). The graph is highly symmetric and is invariant
under six symmetry operations: three rotations and three
reflections. These six operations form the so-called dihedral
group D3, which is non-Abelian.
We now draw a general connection between non-Abelian

latent symmetries of a given Hamiltonian H and its
eigenvalue spectrum. To this end, we use the fact that
each of the so-called “nonlinear” eigenvalues belonging to
RSðH; λÞ in Eq. (2), defined as the solutions λj to the
nonlinear eigenvalue problem

Det½RSðH; λjÞ − λjI� ¼ 0 ð3Þ

is also an eigenvalue of H [22]. Moreover, whenever the
eigenvalue spectra of H and of the subsystem HS̄ S̄ do not
intersect, the eigenvalue spectra of RSðH; λÞ and H
coincide [22]. This motivates calling RSðH; λÞ an
“isospectral reduction.” From the above considerations, it
is clear that degeneracies in the eigenvalue spectrum of
RSðH; λÞ necessarily correspond to degeneracies in the
eigenvalue spectrum of H. Moreover, and as we show in
Sec. I. of the Supplemental Material [24], non-Abelian
symmetries of the isospectral reduction RSðH; λÞ lead to
degeneracies in the spectrum of its nonlinear eigenvalues.
Thus, non-Abelian latent symmetries of H necessarily
induce degeneracies onto the eigenvalue spectrum of H.
Specifically, lower bounds on the multiplicity of H’s
eigenvalues are given by dimensions of the irreducible

(a)

(c) (d)

(b)

FIG. 1. (a) A six-site Hamiltonian H which features a non-
Abelian D3 permutation symmetry if h1 ¼ h2, but only an
Abelian C3 permutation symmetry if h1 ≠ h2. A line between
two different sites i, j corresponds to a nonvanishing matrix
element Hi;j, taking parametric values h1, h2, or h3 (indicated by
different line styles). Loops connecting a site to itself correspond
to diagonal matrix elements Hi;i with parametric values v1 or v2.
(b) The result of the isospectral reduction of H over the three red
sites S ¼ f1; 2; 3g. The reduced Hamiltonian [Eq. (2)] features a
D3 permutation symmetry for any choice of λ; hi, or vi. (c) A
modified kagome lattice with H as a unit cell. The band structure
of this lattice for kx ¼ 0 is plotted in (d) for h1 ¼ 4=3, h2 ¼ 5=3,
h3 ¼ 0.7, h4 ¼ 3=2, vi ¼ 0.
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representations of the underlying non-Abelian symmetry
group of RSðH; λÞ.
We emphasize that the above statements are completely

general in the sense that they are valid for all kinds of latent
symmetries (not just permutations), and for arbitrary (even
non-Hermitian) diagonalizable matrices H. Irrespective of
this applicability to general symmetries, we concentrate on
the special case of permutation symmetries throughout this
Letter. After all, permutation symmetries are among the
easiest to detect—often by bare eye—and thus provide a
convenient workhorse for depicting the main features of
latent symmetries.
In the above, we have explained the spectral degener-

acies of the prototype example Fig. 1(a) in terms of its
latent symmetries. This system has been deliberately
designed to be as simple as possible in order to convey
the main ideas of latent symmetries. The underlying
concept is, however, not limited to such basic examples,
but can be applied to larger systems, as we demonstrate
now. Figure 1(c) shows a lattice built by taking the
prototype Hamiltonian H of Fig. 1(a) as a unit cell. The
band structure of this lattice is depicted in Fig. 1(d). At the
Γ point, that is, at k ¼ 0, the corresponding Bloch-
Hamiltonian features the same latent symmetries as H in
Fig. 1(a). This explains the two double degeneracies in the
band structure [24]. Interestingly, the lattice further hosts
two flat bands, which in general can also be designed
through latent symmetries [30].
Latent Dn permutation symmetries.—Let us now exam-

ine the symmetries of the prototype example of Fig. 1 in
more detail. This setup is invariant under permutations
which cyclically permute sets of three sites, graphically
represented by rotations of multiples of 2π=3. These
rotations form the abelian cyclic group of order 3, denoted
by C3. As we have seen above, the setup also featured a
latent D3 permutation symmetry, and this is no coinci-
dence. Indeed, as we show in the Supplemental Material,
every Cn-permutation symmetric real Hamiltonian H fea-
tures a latent Dn permutation symmetry [24]. As is well
known, the dihedral group Dn is non-Abelian for n ≥ 3, so
that the underlying Hamiltonian automatically features
degeneracies. This gives an alternative explanation to those
degeneracies, which are classically understood in terms of
the combination of the Abelian group Cn≥3 and the real
valuedness of H which corresponds to a time-reversal
symmetry of H [31].
Latent Dn symmetries without any permutation

symmetries.—Above we have stated that a Cn permutation
symmetry of a real Hamiltonian is a sufficient condition for
a latent Dn permutation symmetry. However, it is not a
necessary condition. Indeed, we demonstrate in the follow-
ing the versatility of latent symmetries by showing that they
can even exist when the underlying Hamiltonian H has no
permutation symmetry at all. Figure 2(a) shows an example
of such a Hamiltonian H, which can also be interpreted as

the Bloch HamiltonianHBðk ¼ 0Þ of the lattice in Fig. 2(b)
at crystal momentum k ¼ 0. A detailed derivation of this
lattice is shown in Sec. V of the Supplemental Material
[24]. For hh0h00 ≠ 0 and h0 ≠ h00, H does not feature any
permutation symmetry. However, for any choice of those
three hopping parameters, it features a latent D3 symmetry
which becomes visible when reducing H over the three red
sites S ¼ f7; 8; 9g. As a result of this non-Abelian latent
symmetry,H has at least one doubly degenerate eigenvalue
pair for any choice of h0 and h00. We can now understand the
two double degeneracies in the band structure [depicted
in Fig. 2(c)] of the lattice of Fig. 2(b) at kx ¼ ky ¼ 0:
At this point, the Bloch-Hamiltonian is given by H, so
that it features a latent D3 symmetry and therefore also
degeneracies.
Interestingly, when setting h0 ¼ h00, H features a C2

permutation symmetry, graphically corresponding to a
reflection about the line connecting the sites 4 and 7.
One can thus say that h0 and h00 are control parameters for a
symmetry breaking, and since H features a latent D3

permutation symmetry for any choice of h; h0; h00, this
opens the perspective of investigating and understanding
symmetry breaking in terms of latent symmetries. In
Sec. III. of the Supplemental Material, we show how latent
symmetry preserving modifications (which may break
permutation symmetries) can be derived [24].

(a) (c)

(b)

FIG. 2. (a)AHamiltonian that features nopermutation symmetry
for hh0h00 ≠ 0 and h0 ≠ h00. It does, however, feature a latent D3

permutation symmetry that becomes visible when reducing over
S ¼ f7; 8; 9g. (b) A latticewhose Bloch-HamiltonianHB atk ¼ 0
equals H. The dotted box shows the lattice unit cell. (c) The band
structure of this lattice for kx ¼ 0; h ¼ 1; h0 ¼ 1=2; h00 ¼ 3=4.
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Linking latent to local symmetries.—One might wonder
if a latent symmetry leaves some recognizable traces in the
original Hamiltonian. This is indeed the case: By express-
ing RSðH; λÞ as a power series in λ and subsequently
analyzing it order by order, one can show [24] that

½RSðH; λÞ;M� ¼ 0 ⇔ ½ðHkÞSS;M� ¼ 0 ∀ k; ð4Þ

where M denotes a symmetry operation. In other words,
symmetries of RSðH; λÞ correspond to local symmetries
[32,33] ofH in all matrix powers. In particular,H itself has
to be locally symmetric. Indeed, for our introductory
example of Fig. 1(a) and S ¼ f1; 2; 3g, we see that HSS
denotes the inner triangle, which obviously features the
same symmetries as the corresponding isospectral reduc-
tion RSðH; λÞ depicted in Fig. 1(b).
Equation (4) can be used to facilitate the search for latent

permutation symmetries. To this end, let us assume that we
are given a (possibly large) Hamiltonian H and want to
check if it features a latent permutation symmetry as the
one depicted in Fig. 1(b). In other words, we look for a set
of three sites S ¼ fu; v; wg such thatRSðH; λÞ has the form
of Eq. (2). Now, instead of computing and checking all
possible isospectral reductions ofH over three sites, we can
use Eq. (4) to see that any candidate sites u, v, w necessarily
have to fulfill ðHkÞu;u ¼ ðHkÞv;v ¼ ðHkÞw;w for all k. This
condition can be augmented by employing the Cayley-
Hamilton theorem, which states that any matrix power
Hk≥N (N being the dimension of H) is a polynomial in
smaller powers. Thus, by computing the matrix powers
H;H2;…; HN−1—the cost of which grows polynomially
with N—and grouping the sites accordingly, the number of
possible candidate sites fu; v; wg can be drastically
reduced. In particular, if there is any k such that Hk

features no three sites with equal on-site potential
ðHkÞi;i, a latent symmetry of the kind Eq. (2) is impossible.
Generalized exchange symmetries.—Having demon-

strated the relation of latent symmetries to symmetries of
the subsystem HSS and to degeneracies of H, we finally
relate a subclass of latent symmetries to symmetries of the
original Hamiltonian H. This subclass consists of latent
permutation symmetries of real Hamiltonians. Using graph-
theoretical tools [34,35], such Hamiltonians can be shown
to necessarily feature what we call here a generalized
exchange symmetry (GES). A GES is an orthogonal
symmetric matrix Qði;jÞ fulfilling ½Qði;jÞ; H� ¼ 0 and
ðQði;jÞÞ2 ¼ I and which exchanges the two sites i, j while
acting on the remaining sites as an orthogonal trans-
formation. In the special case when this transformation
is a pure permutation, Qði;jÞ becomes a normal exchange
symmetry, i.e., it acts on each site either as the identity or as
an exchange operator. To provide an impression of the
GESs, we explicitly computed—by solving the equations
derived from its defining properties—Qð1;2Þ for the
Hamiltonian of Fig. 1(a):

Qð1;2Þ ¼

0
BBBBBBBBB@

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 h1h2
d 1 − h2

1

d
h1ðh1−h2Þ

d

0 0 0 1 − h2
1

d
h1ðh1−h2Þ

d
h1h2
d

0 0 0
h1ðh1−h2Þ

d
h1h2
d 1 − h2

1

d

1
CCCCCCCCCA

ð5Þ

with d ¼ h21 − h2h1 þ h22. Note that for the case of h1 ¼ h2
the GES Qð1;2Þ becomes the ordinary exchange symmetry
which permutes (1,2), (5,6), and leaves 3 and 4 invariant,
and therefore describes the reflection about the line that
connects sites 3 and 4 in Fig. 1. However, in the case where
h1 ≠ h2, this pure permutation symmetry is broken,
whereas the more abstract GES persists. We note that,
while the GESs as an abstract symmetry class persists, the
matrix entries of Qð1;2Þ depend on h1 and h2. This is an
important difference to the latentD3 permutation symmetry
of H, whose matrix representation is independent of the
values of hi.
Finally, let us note that one can use the above insights to

prove the existence of degeneracies for real latently Dn≥3
permutation symmetric Hamiltonians in yet another way
[24]. Such Hamiltonians feature more than one GES, and
by explicitly constructing them it can be shown that at least
two of them do not commute with each other. Since the
Hamiltonian H commutes with both of these GESs, it
directly follows that H has to have at least one degenerate
eigenvalue. It remains an open task to classify GESs using
group-theoretical tools.
Conclusions.—We have provided a theoretical frame-

work which connects non-Abelian latent symmetries of
generic discrete models to their spectral degeneracies. For
the important class of latent permutation symmetries, our
results may allow for a geometrical explanation of appa-
rently accidental degeneracies. Moreover, by identifying
latent symmetries as local symmetries of all powers of the
Hamiltonian, our results additionally suggest a convenient
method for finding these latent symmetries. We further
demonstrate that it is possible to break symmetries of an
original Hamiltonian while preserving its latent symmetry.
This may inspire techniques to modify—or probe—a given
system asymmetrically without affecting its degeneracy.
Our considerations apply quite generally to physical

systems possessing a discrete representation in terms of a
finite-dimensional matrix. This includes, among others,
tight-binding models, molecular Hamiltonians in truncated
orbital bases, and multiport scattering setups. We therefore
envision the applicability of our results in a broad variety of
setups, contributing to the better understanding, design, and
control of spectral degeneracies beyond conventional
symmetries.
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