
 

Photon Transport in a Bose-Hubbard Chain of Superconducting Artificial Atoms

G. P. Fedorov ,1,2,3,* S. V. Remizov,4,5 D. S. Shapiro,4,5 W. V. Pogosov,4,6 E. Egorova ,1,2,3 I. Tsitsilin ,1,2,3

M. Andronik ,7 A. A. Dobronosova,7,4 I. A. Rodionov,7,4 O. V. Astafiev,8,1,9,10 and A. V. Ustinov 2,11,3

1Moscow Institute of Physics and Technology, 141701 Dolgoprundiy, Russia
2Russian Quantum Center, National University of Science and Technology MISIS, 119049 Moscow, Russia

3National University of Science and Technology MISIS, 119049 Moscow, Russia
4Dukhov Automatics Research Institute, (VNIIA), 127055 Moscow, Russia

5Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia
6Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow, Russia

7FMN Laboratory, Bauman Moscow State Technical University, 105005 Moscow, Russia
8Skolkovo Institute of Science and Technology, 121205 Moscow, Russia

9Physics Department, Royal Holloway, University of London, Egham, Surrey TW20 0EX, United Kingdom
10National Physical Laboratory, Teddington TW11 0LW, United Kingdom
11Physics Institute and Institute for Quantum Materials and Technologies,

Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany

(Received 15 December 2020; accepted 16 March 2021; published 7 May 2021)

We demonstrate nonequilibrium steady-state photon transport through a chain of five coupled artificial
atoms simulating the driven-dissipative Bose-Hubbard model. Using transmission spectroscopy, we show
that the system retains many-particle coherence despite being coupled strongly to two open spaces. We find
that cross-Kerr interaction between system states allows high-contrast spectroscopic visualization of the
emergent energy bands. For vanishing disorder, we observe the transition of the system from the linear to
nonlinear regime of photon blockade in excellent agreement with the input-output theory. Finally, we show
how controllable disorder introduced to the system suppresses nonlocal photon transmission. We argue that
proposed architecture may be applied to analog simulation of many-body Floquet dynamics with even
larger arrays of artificial atoms paving an alternative way towards quantum supremacy.
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There has been increased effort over recent years in on-
chip simulation of various solid state and quantum optical
models using superconducting circuits [1]. The Bose-
Hubbard (B-H) model is now particularly well covered as
it can be straightforwardly mapped onto arrays of coupled
transmon qubits [2,3]. The pioneering work [4] had
demonstrated this for a three-site linear lattice, and
subsequent experiments were focused on simulating
dynamics with engineered dissipation [5], investigating
the many-body localization phase transitions [6–8], and
correlated quantum walks [9,10]. As numerous theoretical
studies propose a new research direction involving con-
trollable light-matter interaction and Floquet engineering
to study periodically driven Hamiltonians and their non-
equilibrium dynamics [11–15], it is tempting to use
transmon chains to simulate the driven-dissipative
Bose-Hubbard model. The subject is particularly prom-
ising since a recent study has shown that driven systems
may open new way for demonstration of quantum
supremacy [16].
In this Letter, we present a proof-of-principle device that

models nonequilibrium steady-state boson transport
through a Bose-Hubbard chain [17–20] using a linear array

of five transmons strongly coupled to semi-infinite wave-
guides at its edges. While dominating over other loss
channels, this strong coupling is still small compared to the
interaction between the transmons. As the coherence
between sites is not destroyed by the interaction with
the continuum of electromagnetic modes, the suggested
architecture is usable for many-body Floquet simulations
with the ability to capture emitted quantum light. Moreover,
the device complements prior theoretical research on the
transmission spectroscopy of quantum metamaterials [21–
26] with direct experimental data. We also expect that
similar systems may be used to test the accuracy of methods
of contraction of the Hilbert space such as the matrix
product states or tensor networks in general [2,18,27].
The layout of the chip is shown in Fig. 1(a). We use

five capacitively coupled Xmon qubits tunable via indi-
vidual flux lines [5,28]. Strong coupling to the open spaces
is attained via large interdigitated capacitors at the input
and output waveguides and allows us to measure the
microwave transmission through the system. In Fig. 1(b),
we illustrate the physical model simulated by the device;
the corresponding Hamiltonian including the coherent
drive is
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where b̂i, ℏωi, and ℏαi are, respectively, the lowering
operator, single-boson energy, on-site interaction for the ith
site; J is the site-site tunneling rate, and ωd is the drive
frequency [3,29,30]. The dissipation being essential to the
dynamics is included in the corresponding Liouville
equation using Lindbladian superoperators with the col-
lapse operators describing the relaxation and the pure

dephasing for each site at rates γi and γðiÞϕ , respectively
(see Supplemental Material [31] for the explicit formu-
lation). Strong coupling to the edge lines implies γ1 ≈ γ5 ≈
Γ to be the dominating source of decoherence. If ωi ¼ ω,
αi ¼ α, the standard B-H Hamiltonian is restored.
In Fig. 1(c) we show schematically the experimental

setup. We measure the transmission S21ðωdÞ through the
chain using a vector network analyzer (direct transmission
spectroscopy, DTS) and optionally use an additional micro-
wave source to perform the cross-Kerr spectroscopy (CKS)

of the system; in both cases, with the continuous micro-
wave excitation we study the steady-state properties of the
device. To obtain theoretical predictions for the S21 in
DTS, one can use the input-output formalism [32–34].
Since we irradiate the system coherently, we assume
that the input field mode amplitude is related to the
coherent drive strength Ω in the driving operator
ℏΩb̂1 cosωt via

ffiffiffiffiffi
γ1

p hb̂†ini ≈ iΩ=2, which follows from
the quantum Langevin equations [35]. Similarly, the
output field operator b̂†out ≈

ffiffiffiffiffi
γ5

p
b̂†5. From this, we obtain

S21 ¼ hb̂†outi=hb̂†ini ¼ 2Γ · Tr½ρ̂ssb̂†5�=iΩ, where ρ̂ss is the
steady-state density matrix. Physically, this expression
means that the signal transmission is possible if the right-
most transmon becomes non-locally excited while the
leftmost is subject to radiation. Indeed, from the linearized
Langevin equations [31,36] (Ω ≪ Γ) follows that at the
degeneracy point (ωi ¼ ω) five transmission peaks detuned
0;�J;� ffiffiffi

3
p

J from ω should appear due to the interaction,
corresponding to the classical normal mode frequencies.
The widths of the central, next-to-central, and edge peaks
are 2Γ=3;Γ=2, and Γ=6, respectively, and add up to 2Γ [31].
In the quantum-mechanical limit, these resonances
should remain in the spectrum due to the correspondence

(a)

(b)

(c) (d)

FIG. 1. (a) Optical image of the device (false colored). Input
and output waveguides (beige) are strongly coupled to the edge
transmons (green). All transmons can be dispersively read out via
auxiliary resonators (orange) and tuned via flux bias lines (red).
(b) Model of the device—a B-H lattice with five sites. Bosons are
inserted from the left by the drive of strength Ω and leak
predominantly from the sides at rate Γ. The energy of an ith
localized boson is ℏωi, adding another boson to the same site
costs ℏαi < 0. Bosons can tunnel between sites at rate J.
(c) Schematic of the measurement setup: the direct transmission
spectroscopy (DTS) is done using the vector network analyzer
which measures the complex transmission S21. The cross-Kerr
spectroscopy (CKS) requires an additional microwave source
connected through a directional coupler. (d) CKS is done by
sweeping the source frequency (blue arrow) while monitor
ing the transmission at a certain resonance peak via the VNA
(red arrow).

(a)

(b)

FIG. 2. (a) DTS of the chain. S21 includes the attenuation and
amplification in the measurement chain, VNA output power is
shown on the right. In the top row, black lines are the fit of the
lowest five transitions of Eq. (1) for J=2π ¼ 41 MHz,
ωi=2π ≈ 4.05 GHz. (b) CKS via the third mode showing the
emergent band structure of the system. Dashed lines fit the
frequencies of the purely quantum transitions.
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principle; however, new lines caused by purely quantum-
mechanical processes are expected to appear in the non-
linear regime.
The results of the DTS are shown in Fig. 2(a). To unveil

the structure of the eigenmodes and to extract ωi and J, we
bias one of the transmons across the degeneracy point
while keeping the others at around 4.05 GHz. In the left
column, the first transmon is swept, and in the right, the
middle one. The first transmon interacts with all collective
states, and the third only with the odd ones; this behavior
is expected from the Hamiltonian. We find the tunnelling
rate J=2π to be around 41 MHz from the numerical fit.
When the incident power is increased, the resonances are
subject to photon blockade [37] and behave similarly to
what is observed for single superconducting qubits [36].
In the bottom row of Fig. 2(a), we notice spectral
manifestations of the many-body states of the system
which do not have classical counterparts. We thus call the

power-dependent behavior shown in Fig. 2(a) a classical-
quantum transition.
The remaining parameters αi of Eq. (1) can be extracted

via the CKS. In Fig. 2(b) we have done it using the same
two configurations of the transmon frequencies as in
Fig. 2(a) and performed another numerical fit (solid and
dashed lines). The readout tonewas aimed at the third mode,
so the observed spectral frequencies should be corrected by
adding its frequency for each bias voltage. The dashed lines
show the emergent bands of the two-photon subspace: the
many-body states with two excitations at different sites are
near 4.05 GHz and “doublons” [38] are located around
3.85 GHz. The B-H eigenstates with doubly populated sites
have lower energy due to the attractive interactions; the
disorder in the extracted values of αi=2π of approximately
½−188;−178;−178;−178;−188� MHz is around 5% and is
caused by the uncompensated capacitance to the trans-
mission lines.

(d)

(a) (b) (c)

FIG. 3. (a) The analytical solution for the S21 in the linear regime (smooth curves) fitted to the low power data (clouds), normalized.
(b) Experimental and simulated jS21j for various driving powers. Driving power is calibrated to match the Rabi frequency Ω of the
simulation. Dashes show the corresponding multiphoton transition frequencies calculated using the eigenlevels from (c). (c) The energy
level structure of the model with and without interaction using the parameters extracted from the fits; three excitations per site are
included, and up to four excitations total; En is the energy of the nth eigenstate, E0 ¼ 0. (d) Relevant many-body eigenstates projected
onto the unperturbed basis [colors as in (c)]. The inherent randomness in the decompositions of the high-energy states conditions the
random structure of the energy levels.
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To further study the energy structure and nonequilibrium
dynamics of the system during the classical-quantum
transition, we use a direct transmission experiment with
fixed degenerate configuration of the transmon frequencies
ωi=2π ¼ 3.9 GHz. Using a fitting procedure similar to
Fig. 2, we evaluate ωi=2π to [3.898, 3.898, 3.9, 3.901,
3.901] GHz, where deviations from the target value come
from the flux cross-talk. In the linear regime, we estimate the
coupling to the transmission lines and internal dissipation
from the fit of the complex transmission coefficient pre-
dicted by the linearmodelwhich is shown in Fig. 3(a). Using
these data, we also estimate the transmission amplitude
through the attenuation and amplification chain and find that
the third mode has nearly unity transmission. This is
expected as it interacts only with a single “bulk” transmon
[see Fig. 2(a)] and thus has the least internal dissipation.
Since in the linear model it is impossible to discern pure
dephasing and internal dissipation, the relaxation rates from
the fit are larger than true values: we estimate γi to be
½16; 6; 0.1; 3; 16� μs−1; the rates γ1 and γ5 are in good
agreement with the value calculated from the simulated
edge capacitances of 8 fF and justify the assumption of
dominating Γ.
Figure 3(b) shows how the transmission spectrum

changes throughout the transition. The normal mode peaks
gradually saturate due to the photon blockade and multiple
new dips appear caused by reflective multiphoton transi-
tions to the many-body eigenstates [18,25,30]. The exper-
imental data agree very well with the numerical steady-state
simulation in qutip [39,40] of the five-site Bose-Hubbard
model with the parameters extracted earlier and three
bosons per site at max; full simulation of 253 × 253 density
matrix takes approximately a week on a 138 core cluster for
the shown 300 × 300 heat map. The selection rules of the
system do not allow all possible multiphoton lines, but one
can clearly discern an increase of the density of states and
their randomness with increasing band number. It can be
connected to the classical chaoticity of the system if the
distribution of the level spacings corresponds to the
Gaussian orthogonal ensemble [41–44]. The frequencies
of transitions up to four photon are shown with colored
dashes and can be identified with the energy bands shown
in Fig. 3(c) calculated using the fitted parameters of the
model Eq. (1). The statistics of the calculated nearest-
neighbor level spacings resembles the Wigner-Dyson dis-
tribution for the experimentally determined parameters, but
is rather Poissonian for the ideal parameters which prob-
ably means that the system size is too low to obtain the
correct histogram. To show how delocalized are the
eigenstates jni reachable in our device (n is counted
excluding the states with more than three excitations per
site), in Fig. 3(d) we project several of them onto the
noninteracting basis. State j1i has the structure identical to
the classical symmetric low-frequency eigenmode. States
j11i and j20i are at the edges of the two-photon subspace

and form much larger superpositions. One can note the
unfolding randomness in the decomposition coefficients,
which becomes more and more pronounced for higher
energies: no symmetries or even any kind of structure can
be found in the higher eigenstates except for the holelike
four-excitation subspace dual to the single-photon one (see
j116i, j119i).
It is known that the Poissoinian statistics is usually

a property of the disordered Bose-Hubbard model exhibit-
ing localization [6,9,10]. To check how the localization

(a)

(c)

(b)

FIG. 4. (a) Raw transmission data for σ ¼ 6, 40 MHz and 100
realizations of disorder; absolute value of the transmission is
shown with color. (b) Localization and disappearance of trans-
mission with increasing disorder. Each curve shows the absolute
value of the averaged transmission over the Gaussian disorder
realizations with a certain standard deviation σ shown in the
legend. Each next curve is offset downwards for better visibility.
(c) Probability distributions of the brightest peak prominence
hjS21jmaxi (see text) observed in the disorder realizations for the
σ values from (b).
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changes the transport properties, we introduce controllable
disorder into the transmon frequencies near the degeneracy
point in an experiment similar to what was done before
numerically [2]: a certain common frequency variance σ is
chosen, then the random frequency ωþ δω is assigned to
each transmon where δω∈Nð0;2πσÞ and ω=2π¼3.9GHz.
Then the transmission is recorded, and the full process is
repeated 100 times. In Fig. 4(a) we show two examples of
the raw transmission data for σ ¼ 6, 40 MHz. As one can
see, for the smaller standard deviation of the target
frequencies, the eigenmodes stay relatively unchanged
while for the larger the initial structure is completely lost.
The averaged curves for several values of σ are shown in
Fig. 4(b). One can see that when the noise in the transmon
frequencies reaches the coupling strength J=2π, the aver-
aged transmission vanishes. This means that the localiza-
tion is revealed in the transport properties when the
excitation of the first qubit on average does not reach
the last qubit. This fact reminds us of the superconductor-
insulator transition [45] to describe which was the initial
purpose of the Bose-Hubbard model. As the transmission
vanishes only on average and some peaks occasionally
remain even for the largest σ, in Fig. 4(c) we also study the
distribution of the brightest peak prominences (taken as
the mean of 10 points around the maximum) seen over the
disorder realizations and show that it also changes quali-
tatively when σ ≈ J=2π.
In conclusion, we have shown how quantum photon

transport occurs through a Bose-Hubbard chain simulated
by transmon artificial atoms. We have demonstrated that
the behavior of the single-photon subspace of the system
does not deviate from the classical normal mode theory
which is expected from the correspondence principle [46].
However, an increase of the incident photon flux beyond
the dissipation rate reveals the quantum nature of the
system through the photon blockade and multiphoton
transitions to composite many-body states. The classical
theory then fails, and one can only resort to numerical
solution of the master equation to find the non-equilibrium
steady state, which shows excellent agreement with the
data. Finally, we have shown how controllable disorder
affects the photon transport: we find that the transmission
averaged over disorder realizations ceases when the stan-
dard deviation of the transmon frequencies reaches the
interaction strength.
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