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Quantum confinement leads to the emergence of several magnon modes in ultrathin layered magnetic
structures. We probe the lifetime of these quantum confined modes in a model system composed of three
atomic layers of Co grown on different surfaces. We demonstrate that the quantum confined magnons
exhibit nonlinear decay rates, which strongly depend on the mode number, in sharp contrast to what is
assumed in the classical dynamics. Combining the experimental results with those of linear-response
density-functional calculations we provide a quantitative explanation for this nonlinear damping effect. The
results provide new insights into the decay mechanism of spin excitations in ultrathin films and multilayers
and pave the way for tuning the dynamical properties of such structures.
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Understanding the processes behind the excitation and
relaxation of spin excitations in low-dimensional magnetic
structures is one of the most intriguing research directions
in solid-state physics. A detailed knowledge of the funda-
mental mechanisms involved in such processes is the key to
understanding many different phenomena. Examples are
ultrafast magnetization reversal by magnetic field pulses [1]
or by torque transfer from spin-polarized currents [2–4],
vortex core gyration driven magnon emission [5], sub-
picosecond demagnetization by photon pulses [6–9], and
spin dependence of image potential states at ferromagnetic
surfaces [10]. In addition to its fundamental impact, a
complete understanding of magnetic relaxation mecha-
nisms is of great importance for designing efficient spin-
based devices as the power consumption of such devices is
determined by the damping [11–13].
The excited state of a magnetic system is described by

magnons, the quanta of spin waves. The relaxation of such
an excited state can, in principle, involve the dissipation of
magnetic energy in several ways. In approaches based on
the classical dynamics, damping is described by a phe-
nomenological damping parameter, commonly referred to
as Gilbert damping [14–16]. This description is only valid
in the case of uniform ferromagnetic resonance, i.e., the
magnons with zero wave vector (q ¼ 0), under some
circumstances [17–21]. For magnons with q ≠ 0, the
relaxation of a certain magnon mode can involve its
dissipation to other magnons (multimagnon scattering
process) or, in the case of itinerant magnets, their dis-
sipation into single-particle electron-hole pair excitations,
known as Stoner excitations. In both cases, one expects an

increase of the magnon decay rate with the magnon energy,
since usually the density of both magnon as well as Stoner
states increases with energy.
In structurally well-defined low-dimensional magnetic

structures one expects additional magnon modes due to the
effects associated with quantum confinement. In ultrathin
magnetic films composed of N atomic layers one expects
the existence of n ¼ 0; 1;…; N − 1 magnon modes, as a
result of quantum confinement in the direction
perpendicular to the structure [22–28]. Each magnon mode
is characterized by its eigenvalue and eigenstate and hence
differ from the others. These magnon modes spread in the
energy-momentum space [29–31]. The dispersion relation
of all confined magnon modes has recently been probed
[32–34]. However, the relaxation mechanism of these
magnon modes remains hitherto unexplored.
In this Letter, we report on the decay rate of the quantum

confined magnon modes in a model system. We show that
the quantum confined magnons exhibit decay rates, which
are nonlinear in energy and strongly depend on the
magnons’ mode number n. This observation is in contrast
to what is commonly discussed in the framework of the
classical dynamics. Combining the results of linear-
response time-dependent density-functional theory calcu-
lations with adiabatic spin dynamics calculations, we
provide a quantitative explanation for the damping of
quantum confined magnons.
Experiments are performed by means of spin-polarized

high-resolution electron energy-loss spectroscopy
(SPEELS) on ultrathin Co films with a thickness of three
atomic layers epitaxially grown on Ir(001), Ir(111), and
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Cu(001). In SPEELS a monochromatic spin-polarized
beam is scattered from the sample surface and the scattered
electrons are analyzed in terms of their energy and wave
vector transfer. Figure 1(a) shows typical SPEELS spectra
recorded on a 3 monolayer (ML) Co film on Ir(001). The
spectra are recorded for the two possible incoming spin
states. I↓ (I↑) represents the intensity spectrum when the
spin polarization of the incoming beam is parallel (anti-
parallel) to the sample magnetization [26]. The difference
spectrum, shown in the lower panel, contains
all the possible spin-flip excitations of down to up,
including magnons [26,35]. The data are recorded at
ðqx; qyÞ ¼ ð0.3; 0.3Þ Å−1, corresponding to the in-plane
wave vector qk ¼ 0.42 Å−1 along the Γ̄–M̄ direction. In
order to unambiguously determine the magnon excitation
energy and the lifetime, the difference spectra recorded at
different wave vectors are fitted with three lines, corre-
sponding to the expected three magnon modes of the
system. Each line includes a Lorentzian line shape, con-
voluted with the experimental broadening [36,37]. An
example is shown in Fig. 1(b), where the experimental
difference spectrum (I↓ − I↑) is shown together with the
fits. The magnon dispersion relation was measured by
probing the magnons at different wave vectors and along
different symmetry directions of the surface Brillouin zone
and the results are summarized in Fig. 1(c). For a
quantitative description, the magnon properties were cal-
culated based on first principles. It has been shown that a
quantitative description of the experimental magnon bands
can only be provided when spin-dependent many-body
correlation effects on the majority Co spins are taken into
consideration [32,38]. In Fig. 1(c) the magnonic band
structure calculated using this approach is presented as
the color map. The band structure is presented by plotting

the magnon Bloch spectral function. Since the adiabatic
approach does not account for the decay of magnons, the
spectral function exhibits sharp peak at the places where
magnon modes exist. The approach accounts, however, for
all the details of the structure (e.g., the reconstruction of the
Ir surface) and provides an unambiguous way for the
determination of magnon properties, e.g., their real space
localization and density of magnon states [34].
To understand the decay mechanism of magnons, we

calculated the frequency ω and wave vector q-dependent
transverse dynamical spin susceptibility χðω;qÞ, using
linear-response time-dependent density-functional theory
(LRTDDFT) [39–42]. In the first step, the so-called Kohn-
Sham susceptibility was calculated, based on first princi-
ples, and in the second step, χðω;qÞ was calculated self-
consistently (see [41] for details). In Fig. 1(d) we provide
an example of Imχðω;qÞ at ðqx; qyÞ ¼ ð0.3; 0.3Þ. Since in
this approach both magnons and Stoner excitations are
adequately taken into account, Imχðω;qÞ can directly be
compared to the difference spectrum shown in Fig. 1(b)
[43–49]. In order to have a better comparison, we convolute
the results with the experimental resolution. Similar to the
experiment, one observes all the three confined magnon
modes. Each mode exhibits its own decay rate.
In order to quantify the decay rates of different quantum

confined magnon modes, we carefully analyze the intrinsic
broadening of the modes and the results are summarized in
Fig. 2(a), indicating that different quantum confined
magnon modes show different decay rates. Moreover, to
address the effects associated with the film morphology and
the hybridization of the electronic structures of the film
with those of the underlying substrate, similar experiments
were performed on 3 ML Co films grown on Cu(001) and
Ir(111) [26,50–52]. The results are presented along with
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FIG. 1. (a) SPEELS spectra recorded on 3 ML Co=Irð001Þ at ðqx; qyÞ ¼ ð0.3; 0.3Þ Å−1. I↓ (I↑) represents the spectrum when the spin
polarization of the incoming electron beam is parallel (antiparallel) to the magnetization. The difference spectrum I↓ − I↑ is shown in
the lower panel. (b) The difference spectrum and the fits used to extract the dispersion relation and the lifetime of different quantum
confined magnons indicated by n ¼ 0–2. (c) The dispersion relation of all confined magnon modes. The experimental data are shown by
symbols and the calculated magnon Bloch spectral function using our adiabatic approach is presented as the color map. The dotted line
shows the place in the surface Brillouin zone, where the spectra shown in (a) and (b) are recorded. (d) Imχðω;qÞ at ðqx; qyÞ ¼
ð0.3; 0.3Þ Å−1 calculated by LRTDDFT and convoluted with the experimental broadening.
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those of the Coð001Þ=Irð001Þ system. We note that, due to
the geometrical consideration, e.g., different lattice con-
stants, these systems possess different magnonic band
structures. The main aim here is to understand the decay
rate of these magnon modes, with respect to the mode
number and mode energy and quantify the different
contributions to the damping. In a similar manner we also
analyze the line broadening of all the magnon modes as
calculated by LRTDDFT and the results are summarized in
Fig. 2, indicating a very good agreement with the exper-
imental results. A careful analysis of the experimental and
theoretical results indicates that (i) each magnon mode
possesses its own decay rate, (ii) for all studied systems the
magnon mode with n ¼ 0 exhibits the lowest damping,
and (iii) the magnon linewidth versus energy is nonlinear,
which becomes more pronounced for the higher order
modes.
Generally, the main source of damping in itinerant

ferromagnets, such as the systems studies here, is the
result of the decay of these collective modes into single-
particle Stoner excitations, a mechanism known as Landau
damping. In the case of ultrathin magnetic films on
substrates, the hybridizations of the electronic states of
the film with those of the substrate can open additional
decay channels and lead to stronger damping of the
magnons. Hence the Landau damping in layered ferro-
magnets on nonmagnetic substrates can be very complex,
compared to that of the single-element bulk ferromagnets
[41,42,53,54]. LRTDDFT calculations start with the ab ini-
tio calculations of electronic structures using experimental
geometrical structures as inputs. The electronic structures
are then used to calculate χðω;qÞ. Since the approach treats
both magnons and Stoner excitations on the same basis, the
Landau damping is fully taken into account.
Looking at the results shown in Fig. 2, the linewidth of

each magnon mode increases with energy in a nonlinear

fashion. The increase of the magnon linewidth with energy
is because the decay probability of a magnon into a Stoner
pair increases with energy. This probability depends on the
details of the involved electronic bands and hence is not a
simple linear function with energy. This scenario is even
more complex when considering the fact that the electronic
states of the film hybridize very strongly with those of the
substrate. The so-called Landau hot spots, where the
decay of magnons to Stoner excitations takes place,
become increasingly important for higher energy magnons
[41,42,53]. As it is apparent from Fig. 2, both the
experimental and theoretical results indicate that these
magnon modes exhibit different (nonlinear) decay rates.
Hence the origin of the mode-dependent decay rate lies in
the Landau damping. The effect can be understood based
on the fact that for the n ≠ 0 magnon modes the
perpendicular magnon wave vector is nonzero (q⊥ ≠ 0).
Hence the Stoner pairs with nonzero perpendicular momen-
tum enter the picture. The possibility of the decay into such
Stoner modes shortens the lifetime of magnons with n ≠ 0.
In the LRTDDFT calculations, both the magnons and
Stoner excitations are put on an equal footing and hence
this effect is clearly observed in the calculated linewidth.
The second possible decay channel is the decay of a

certain magnon mode to the other possible magnon (or
phonon) modes that share the same energy. As an example,
in Fig. 3(a), the processes of magnon decay of the n ¼ 1
magnon mode at the Γ̄ point is shown by the solid arrows.
In addition, small variations in the film thickness can lead
to additional magnon modes, which may also share the
same energy with this mode [55]. In order to mimic this
effect in Fig. 3(a), we also show the magnonic bands of a
film with the same geometrical structure but with a thick-
ness of 4 ML. The results are shown by the light-gray color
in Fig. 3(a). Since the n ¼ 1mode can also degenerate with
the modes of such a system, one needs to consider such
decay rates. The decay rates of this kind are shown by the
dashed arrows in Fig. 3(a). In the LRTDDFT calculations,
such effects are not taken into account. In order to
generalize the decay process of a certain magnon mode
to all the other possible quasiparticles, the damping may be
written as [53,56]

Γðq;ωÞ ¼
X

n;m

Z

ΩBZ

Pn
kP

m
k−qδðE − En

k − Em
k−qÞdk; ð1Þ

where Pn
k and Pm

k−q denote the probability of finding a
magnon, phonon, or electron with the wave vector k in the
nth and k − q in the mth band, and En

k (Em
k−q) describes

the energy dispersion of the nth (mth) quasiparticle band.
The term shall account for all the possible decay channels
through which a magnon with the energy ℏω and wave
vector q can decay into single-particle Stoner pairs, other
magnons, and phonons, satisfying the energy conservation
rule Eq ¼ ℏω ¼ Ek − Ek−q. Note that, in the case of
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FIG. 2. The magnon linewidth versus energy for all quantum
confined magnon modes in 3 ML Co on (a) Ir(001) and (b) Cu
(001). The experimental results are shown by diamonds and the
results of LRTDDFT calculations are shown by circles. The filled
(open) symbols represent the data along the Γ̄–M̄ (Γ̄–X̄) direc-
tion. The black diamonds in (a) represent the results of the n ¼ 0
magnon mode of 3 ML Co=Irð111Þ.
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electronic bands, the transition should also account for the
conservation of magnon’s total angular momentum, mean-
ing that only the transitions between the bands with
opposite spins should be considered. In order to describe
the decay of magnons into bosonic quasiparticles, e.g.,
phonons and other possible magnon states, according to
Eq. (1), one should be able to analyze the different
possibilities of such decays in the energy-momentum
space. In metallic ferromagnets, the phonon energies are
rather low (< 20 meV) and the magnon-phonon coupling
is rather weak. Hence, the magnon decay by phonons
becomes of minor importance for high-energy magnons.
The main decay channel of the magnon-boson kind is the
one associated with their decay into other magnon modes.
In order to estimate the strength of such decay rates, we
calculated the magnonic density of states (DOS). The
results of such calculations are presented in Fig. 3(b).
We also present the magnon DOS of a film composed of
four atomic layers. The probability of finding magnons in a
given state (indicated by circles) can therefore be simply
estimated by analyzing the magnon DOS. The magnon-
magnon decay is directly proportional to the number of
initial and final magnon states, which may contribute to
such a process (Pn

k and Pm
k−q). If such states are largely

available, the magnon decay can occur with a large
probability. Looking at the data presented in Fig. 3, one
realizes that such decay process can occur with a large
probability, since there are enough initial and final magnon
states that can contribute to these kinds of magnon decays
(solids arrows in Fig. 3). In addition to the intrinsic
magnon-magnon decay, the variation in the film thickness
can also lead to a magnon decay. For example, if the film is
composed of terraces with the thickness of 3 and 4 ML, the
n ¼ 1 magnon mode of the 3 ML terraces can decay into
the n ¼ 1 and n ¼ 0magnon modes of the terraces with the
thickness of 4 ML. Such a process can happen with a large
probability, as shown by the dashed arrows in Fig. 3.
Interestingly the n ¼ 2 mode of the 3 ML region can, in
principle, decay to the other modes of the 4 ML region via
an inelastic process in which the magnons are decayed in a
two-step process [dotted arrows in Fig. 3(b)]. The process
can occur with a high probability because near the states of
the n ¼ 2 mode of the 3 ML region there exist a large
number of states caused by the n ¼ 2 and n ¼ 1 modes of
the 4 ML region. Co films on Cu(001) grow in a layer-by-
layer fashion. Because of the reconstruction of the Ir(001)
surface, the roughness of Co films on this surface is larger
than that of the Co films on Cu(001). This leads to a
larger magnon decay of this kind and explains the larger
experimental linewidth of this mode as compared
to the Co=Cuð001Þ system and also to the results of
LRTDDFT.
In summary, aiming for a fundamental understanding of

the decay processes of quantum confined magnons in
layered ferromagnets, we investigated the lifetime of these
excitations in a model system composed of 3 ML Co grown
on different surfaces over a wide rage of energy and
momentum. It was observed that the quantum confined
magnons exhibit nonlinear decay rates. The decay rates
strongly depend on the mode number. In the phenomeno-
logical approach of classical dynamics, the decay rate is
assumed to be linear. Such an assumption is not valid for
the quantum confined magnons. Combining the experi-
mental results with those of LRTDDFT calculations, we
provide a quantitative explanation for this nonlinear damp-
ing. In addition, since the quantum confinement leads to the
emergence of several magnon branches, the decay proc-
esses as a result of magnon-magnon scattering become also
important. These multimagnon decay processes become
stronger due to variations in the film thickness. Our results
indicate that the main source of damping in layered
structures made of itinerant ferromagnets is due to the
Landau damping as a result of their decay into Stoner
excitations. Hence in order to design layered ferromagnets
with low damping, first the electronic structure should be
tuned such that the Landau damping is suppressed.
Moreover, atomically flat films are required to achieve a
low damping. In addition to the fact that our results provide
new insights into the decay mechanism of spin excitations

0.0

0.1

0.2

0.3

0.4

0.5

 

)
Ve( ygren

E n oi taticx
E nong a

M

X      Γ        X   M          Γ          M  0
0.0

0.1

0.2

0.3

0.4

0.5

)
Ve( ygren

E  noit atic x
E nonga

M  

Magnon DOS

  3 ML
  4 ML

(a) (b)

0

1

n=3

n=2

n=1

n=0

FIG. 3. (a) The magnon Bloch spectral function of 3 ML Co on
Ir(001) based on adiabatic calculations. The color scale represents
the amplitude of the spectral function. The magnonic bands of a
4 ML film are also shown by the light-gray curves. The multi-
magnon scattering processes of the n ¼ 1 magnon mode within
the 3 ML terraces are shown by the solid arrows. The decay
processes within the terraces of different thicknesses (3 and
4 ML) are shown by the dashed arrows. (b) The magnonic density
of states for a 3 and 4 ML film calculated based on the adiabatic
approach. The direct decay of the n ¼ 1 magnon mode of the
3 ML film to the n ¼ 0 and n ¼ 1 of a 4 ML film is illustrated
with the dashed arrows. The horizontal dotted light-blue line
denotes the energy of the bottom of the n ¼ 1 mode of the 3 ML
system (at qk ¼ 0), where this mode can scatter to the other
modes. The indirect decay of the n ¼ 2 magnon mode of the
3 ML film to the n ¼ 2 and n ¼ 1 modes of the 4 ML film is
schematically shown by the dotted black arrows.

PHYSICAL REVIEW LETTERS 126, 177203 (2021)

177203-4



in ultrathin films and multilayers, they provide guidelines
regarding how the dynamical properties of layered struc-
tures can be tuned.
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