
 

Floquet Engineering Correlated Materials with Unpolarized Light

V. L. Quito * and R. Flint
Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

(Received 26 March 2020; accepted 2 March 2021; published 27 April 2021)

Floquet engineering is a powerful tool that drives materials with periodic light. Traditionally, the light is
monochromatic, with amplitude, frequency, and polarization varied. We introduce Floquet engineering via
unpolarized light built from quasimonochromatic light and show how it can modify strongly correlated
systems, while preserving the original symmetries. Different types of unpolarized light can realize different
strongly correlated phases As an example, we treat insulating magnetic materials on a triangular lattice and
show how unpolarized light can induce a Dirac spin liquid.
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Floquet engineering provides a powerful method to
access and control phases and phenomena absent or rare
in equilibrium [1–10]. In its most common application,
Floquet engineering consists of continuously driving a
sample with monochromatic laser light, which has a fixed
polarization. Unless the polarization axis is preserved by
lattice symmetries, polarized light explicitly breaks either
lattice (linear polarization), time-reversal (circular polari-
zation), or both symmetries. This explicit symmetry break-
ing can be useful, as new couplings like chiral fields that
induce spin chirality [11–14] or anomalous Hall effects
[15–17] can be generated; or spatial anisotropies and
dimensionalities can be tuned [18–22]. While polarized
light drives interesting physics [1,23,24], some correlated
phases are only accessible if all symmetries are preserved.
For example, symmetric spin liquids require preserving
lattice and time-reversal symmetries [25]. These phases are
found in equilibrium models, but are confined to small
regions of phase space theoretically and are extremely rare
experimentally. Floquet engineering could provide a new
way to access spin liquids in materials and to tune across
their quantum critical points.
Unpolarized light preserves symmetries, but is not

strictly monochromatic. Thus, it is not obvious that
Floquet techniques apply or what the effect is on correlated
materials, although some promising work analyzed the
effect of noise in Floquet engineered graphene [26]. This
Letter provides the general theory and applicability of
unpolarized light in Floquet systems. Different kinds of
unpolarized light sample polarizations differently, under-
stood as different paths over the Poincaré sphere shown in
Fig. 1. We prove that Floquet engineering with effectively
unpolarized light is possible and introduce a simple model
with two oppositely circularly polarized lasers whose
frequencies are slightly detuned, resulting in unpolarized
light whose polarization vector explores the equator of the
Poincaré sphere. We calculate the effect on magnetic
exchange interactions in Mott insulators and show that

polarization averaging of the final result agrees with the
exact result for sufficiently slow variation of the polariza-
tion vector. We then consider all types of unpolarized light
and show how varied realistic choices can give significantly
different exchange couplings while preserving the same
symmetries. We treat the half filled triangular Hubbard
model in detail and show how to boost the ratio of J2=J1
and potentially access both the Dirac [27–34] spin liquid

FIG. 1. The Poincaré sphere captures all polarization profiles.
The axes are the Stokes parameters, which give the degree of
horizontal and vertical (S1), �45° (S2), and circular (S3) polari-
zation. The monochromatic light traditionally used in Floquet
engineering corresponds to a single point. Unpolarized light
corresponds to paths on the sphere with hS⃗i ¼ 0. As we show,
different paths can lead to distinct correlated phases. Any parallel
of constant latitude χ preserves rotational symmetry (e.g., red
curve). If parallels of both �χ are included (green curves), time
reversal is also preserved. Inset: parametric plot of the electric
field of our simple example, where the polarization traverses
the equator with period Tp. The thick blue line shows a
single period T.
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and the time-reversal symmetry breaking chiral spin liquid
[32,33,35,36]. Finally, we discuss how Floquet engineering
with unpolarized light may be reasonably implemented
experimentally.
We examine magnetic exchange couplings in a single-

band Floquet-Hubbard model, where electrons hop on a
lattice in the presence of a time-dependent electric field,
E ¼ − ∂A

∂t . There is a strong penalty for double occupancyU,

H0 ¼ −t1
X
i;δi

e−iAðtÞ·δic†i ciþδi þ U
X
i

ni↑ni↓ − μ
X
i

ni: ð1Þ

The chemical potential μ is adjusted to ensure half
filling. We consider only nearest-neighbor links labeled
by δi ¼ ðcosϕi; sinϕiÞ and assume light propagation nor-
mal to the sample. We take the vector potential to be time
periodic, with period T ¼ 2π=Ω, which allows the Fourier
transform to Floquet space with the discrete set of frequen-
cies [37–40] mΩ, m ∈ Z. In this space, the electrons now
hop not just between sites, but between Floquet sectors
labeled by jmi [1,40],

H ¼ −
X
m;n

X
i;δi

tðn−mÞ
i;iþδi

c†i ciþδi jmihnj

þ
X
m

X
i

ðUni↑ni↓ þmΩÞjmihmj: ð2Þ

One key feature is that Ω may be tuned such thatmΩ ¼ −U
for some integer m. If so, pairs of doublons and holons will
be excited across the Hubbard gap [41–46], a resonance that
destroys the Mott insulating state. However, for frequencies
away from these resonances, which have width ∼t1, the
heating is minimal and an effective spin model treatment is
justified [14].
Typically, the Floquet formalism treats a single fre-

quency Ω, but we now extend it to quasimonochromatic
unpolarized light. We consider light combining two circu-
larly polarized beams with slight frequency detuning,
which causes the polarization vector to circle the equator,
as shown in the inset of Fig. 1, sampling all linear
polarizations equally. We call the two frequencies Ω� ≡
Ω�Ωp and require that they be commensurate to ensure
overall time periodicity. We assume that the period of the
light T ¼ 2π=Ω is small compared to the period of the
polarization Tp ¼ 2π=Ωp, and the commensurability is
ensured by taking Tp ¼ NT, where N is an integer that is
large for quasimonochromatic light. The electric field is

EðtÞ ¼ E0

�
cosΩpt

sinΩpt

�
Reðe−iΩtÞ;

¼ E0

2
Re

��
1

i

�
e−iΩþt þ

�
1

−i

�
e−iΩ−t

�
: ð3Þ

We can use perturbation theory to find the magnetic
exchange couplings numerically for any integer N and

analytically for large but finite N; exactly at N ¼ ∞,
the light is linearly polarized. We first find the effective
hoppings between sites and Floquet sectors, generically

given by tðmÞ
i;iþδi

¼ t1=ð2πÞ
R
2π
0 dθe−imθeiAðθÞ·δ [1], where

θ ¼ Ωpt and AðtÞ ¼ −
R
t dt0Eðt0Þ. In our particular case,

tðmÞ
i;iþδi

¼ t1
2π

Z
2π

0

dθe−imθeiAþ sin θ̃þþiA− sin θ̃− ; ð4Þ

where A� ¼ A0ð1� N−1Þ−1, with fluence A0 ¼ E0=ð2ΩÞ,
and θ̃� ¼ θðN � 1Þ ∓ ϕi, where ϕi gives the directional
dependence. The integral can be performed by decompos-
ing both (�) exponentials into sums over Bessel functions
using expðix sin ρÞ ¼ P

m0 J m0 ðxÞeim0ρ [47],

tðmÞ
i;iþδi

¼ t1
Xþ∞

m1;m2¼−∞
J m1

ðAþÞJ m2
ðA−Þe−iðm1−m2Þϕl

× δm−Nðm1þm2Þþm2−m1
: ð5Þ

The sums over m1;2 can be calculated numerically for any
integer N. It is convenient to parametrize m ¼ Nm̃þ k,
with m̃ ¼ m1 þm2 and k ¼ m2 −m1 integers, which

allows the hopping to be written as tðNm̃þkÞ
i;iþδl

≡ t1fm̃k e
−ikϕl ,

with fm̃k ¼ J 1
2
ðm̃þkÞðAþÞJ 1

2
ðm̃−kÞðA−Þ. For sufficiently large

N, the non-negligible amplitudes fm̃k are tightly clustered
around each m̃, with k ≈ 0. An example hopping profile is
shown in Fig. 2(a) as function of m. We can now calculate
the nearest-neighbor exchange couplings for each direction

JðδlÞ1 expanding in the excited energies, U þ ðNm̃þ kÞΩp

[48–50],

JðδlÞ1 ¼ 4
X
m̃;k

tðNm̃þkÞ
l tð−Nm̃−kÞ

l

U þ ðNm̃þ kÞΩp
: ð6Þ

The results as a function of fluence A0 are shown in
Fig. 2(b) for fixed frequency and several values of N. For
small N, J1 is direction dependent (results are for δ1 on
the triangular lattice, with ϕ1 ¼ π=3). As N increases, J1
becomes isotropic and converges to the average over
linearly polarized monochromatic light.
We now discuss the limit of large but finite N, where we

obtain analytical results. We note that the hoppings, Eq. (5),
are dominated by contributions from m ≈ Nm̃, allowing
the sums to be truncated for k ≪ N. For large N,
Aþ ≈ A− ≈ A0. As the numerators of Eq. (6) are dominated
by small k=N for each m̃, we approximate

JðδlÞ1 ≈ 4t21
X
m̃

P
kjfm̃k j2

U þ m̃Ω
: ð7Þ

Here, we neglect the k dependence of the denominator, but
one must be careful, as the k dependence appears to give
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further resonances at every k value. The numerators are
strongly suppressed in k=N, however, as shown in Fig. 2(a),
and so only the resonances near the main Ω ¼ −U=m̃
resonance are dangerous. The above result then takes
the same form as the magnetic exchange couplings for

monochromatic light with effective hoppings t1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

k jfm̃k j2
q

.

These are independent of ϕl, making JðδlÞ1 isotropic, and fm̃k
is even with respect to k, which guarantees that chiral terms
vanish for large N [51]. Chiral fields (Jχ) couple to the

scalar chirality S⃗i · ðS⃗j × S⃗kÞ and are the manifestation of
time-reversal symmetry breaking; these may be calculated
within fourth-order perturbation theory [14,51]. The van-
ishing of chiral terms as N increases is shown in
Fig. 2(b). These analytical results agree well with the exact
numerical sums, for Ω detuned from the resonances and
sufficiently large N ≳ 10. Moreover, they agree with the
simple average of the monochromatic Floquet results over
all linear polarizations.

In this concrete example, we can address the experi-
mental feasibility of the timescales. The time for the spins
to relax to the new low energy state given by the non-
equilibrium exchange couplings is Trel ∼ 1=jJ1j. The spins
must feel the unpolarized exchange couplings, and so
Trel ≫ Tp. All this, and the measurement must happen
within a single laser pulse. Most generously, we require
Tpulse ≫ Trel ≫ Tp ≫ T, where Tpulse is the duration of the
pulse. When this hierarchy of timescales is fulfilled,
experiments should realize the effective models discussed
here, not the time-dependent set of couplings JðδlÞ1 ðtÞ. We
further discuss the timescales in the Supplemental Material
to argue that these are experimentally plausible [51].
Now we turn to general unpolarized light, where differ-

ent protocols can lead to different physics. Any polarization
profile can be decomposed into Stokes parameters [66],

S⃗ ¼ Iðcos 2χ cos 2ψ ; cos 2χ sin 2ψ ; sin 2χÞ; ð8Þ

which describe the surface of a sphere of radius
ffiffi
I

p
: the

Poincaré sphere (Fig. 1), where I is the intensity. For fixed
monochromatic light, S⃗ describes a point on the surface.
The poles, χ ¼ �π=4 correspond to left and right circularly
polarized (CP) light, respectively, while linear polarization
(LP) lies on the equator (χ ¼ 0), with angle ψ . For
unpolarized, nearly monochromatic light, the polarization
vector slowly traverses a periodic path on the Poincaré
sphere with characteristic time Tp ¼ 2π=Ωp ≫ T ¼ 2π=Ω,
such that the time average of the Stokes parameters is
zero, hS⃗i ¼ 0 [28,66–73], of which the above case is one
example. Generically, effective couplings in correlated
systems are sensitive to the type of unpolarized light,
which can be tuned. Unpolarized light is differentiated by
higher-order correlators of the Stokes parameters hSiSji,
hSiSjSki, etc. [74], which must also preserve lattice and
time-reversal symmetries for the correlated physics to
respect those symmetries.
To preserve lattice and time-reversal symmetries, polari-

zation distributions fðχ;ψÞ must be invariant under rota-
tions and have zero net chirality. Such distributions
generate “type II” light [75]. We have already discussed
type II Glauber light, which samples all LPs equally,
encompassing the equator of the Poincaré sphere.
Generic type II light may be constructed from super-
positions of distributions with circles at χ ¼ �χ0,
fðχ;ψÞ ¼ 1

2
½δðχ − χ0Þ þ δðχ þ χ0Þ�. Type I light is

more restrictive, sampling the Poincaré sphere
uniformly, fðχ;ψÞ ¼ 1 [75]. Fixed intensity type I light
is known as amplitude-stabilized unpolarized light,
while natural light has a varying intensity, fðI; χ;ψÞ ¼
ð2=I0Þ exp ð−2I=I0Þ [76]; for exchange couplings, these
give identical results after averaging over I. It is possible to
generate nearly monochromatic type II Glauber [68] and
type I light [67,69], either using spatial depolarizers or by

(a)

(b)

FIG. 2. (a) The hopping terms jtðmÞj2 (red) as a function of m,
for N ¼ 25 and A0 ¼ 1.5. The non-negligible values cluster
around m ¼ Nm̃ with small satellite peaks. When these clusters
are well separated, as for sufficiently large N, the contribution of
each cluster can be summed to give an approximate jtðm̃Þj2 (blue).
It is important to avoid resonances with non-negligible weight.
The arrow indicates our chosen frequency with m=N ¼ −3=2 for
NΩp=U ¼ Ω=U ¼ 2=3, where the amplitude of jtðmÞj2 is vanish-
ingly small. (b) J1 as a function of fluence A0. The black line
indicates the monochromatic average over LPs, which coincides
with the N ≥ 25 results. Also shown with dashed lines are chiral
couplings on a triangular lattice Jχ , normalized by the bare ðJ1Þ0.
N ¼ 1 corresponds to the circularly polarized case. As N
increases, Jχ becomes vanishingly small.

PHYSICAL REVIEW LETTERS 126, 177201 (2021)

177201-3



superimposing slightly frequency detuned incoherent laser
beams with orthogonal polarizations [51].
Any type of unpolarized light may be explicitly con-

structed by combining pairs of detuned lasers. The example
above used a pair with equal weights of detuned left
circularly polarized (LCP) and right circularly polarized
(RCP) beams to produce a polarization vector traversing the
equator. Any latitude may be traversed using a similar
pair with unequal weights, and our analysis can proceed
similarly. Different latitudes may then be superimposed by
superimposing incoherent pairs of beams [77]. Therefore,
for any type, we can calculate the couplings for an
arbitrary fixed polarization for monochromatic light (see
Supplemental Material [51]) and simply average over the
polarization distribution [78], as shown in the previous
example. For a given protocol, the magnetic exchange
couplings Jij are found by averaging

hJiji ¼
R π=4
−π=4 dχ

R
π
0 dψ cos 2χfðχ;ψÞJijðχ;ψÞR π=4

−π=4 dχ
R
π
0 dψ cos 2χfðχ;ψÞ

: ð9Þ

To demonstrate how varying the polarization protocol
can drive materials through different regions of phase
space, we explicitly consider the triangular lattice. It
provides an apt example, as multiple spin liquids are
accessible via different directions in phase space. While
the nearest-neighbor (J1) model has 120° order, spin liquids
may be accessed by adding second neighbor (J2), chiral
(Jχ), or ring exchange (J□) terms. There is a Dirac spin
liquid for J2=J1 ≳ 0.1 [27–34], a chiral spin liquid
for either Jχ=J1 ≳ 0.2 and J2 ¼ 0 or Jχ=J1 ≳ 0.025 for
J2=J1 ∼ 0.1 [32], and a spinon Fermi surface state for
J□=J1 ≳ 0.2 [79]. The relevant Floquet engineered cou-
plings may be found by expanding in U þmΩ either via
the Brillouin-Wigner perturbation theory to fourth order
[48,49], used in this Letter, or a Schrieffer-Wolff trans-
formation [50] (details in the Supplemental Material [51]).
Here, we fix the polarization and later average following
Eq. (9) to find the desired unpolarized result.
To maximally enhance the further neighbor

exchange couplings, we must approach the resonances at
Ω ¼ −U=m. Yet, if the frequency is too close, doublons
and holons are excited and heating is a serious problem.
The Hubbard bands have a finite bandwidth 2γt1, where γ is
lattice dependent (γ ¼ 2

ffiffiffi
5

p
for the triangular lattice [80]),

so to avoid heating upon approaching theU ¼ Ω resonance
from below, we keep Ω < U − 2γt1. [81] We also must
insist, given our fluences, that two photons cannot excite
electrons between Hubbard bands, 2Ω > U þ 2γt1 [82].
This restriction limits potential materials, as only strongly
insulating materials with t1 < U=ð6γÞ allow strong
enhancements without heating. We fix t1 ¼ U=ð6γÞ and
Ω=U ¼ 2=3 to avoid heating while maximizing the
enhancements; see the red vertical line in Fig. 2(a).
Sufficiently far from resonance, there is minimal heating

even for large fluences [14]. We calculated the
enhancements of J1, J2, J3, and J□ for all kinds of type
II and type I light. J2=J1 is maximally enhanced by either
type I light, type II light with only equal parts LCP and
RCP light, or CP light, which also generates Jχ . We show
both the absolute change, Fig. 3(a), and enhancement over
equilibrium values, Fig. 3(b), as functions of fluence.
Because of the Bessel function structure, moderate fluences
maximize the enhancement [83]. The absolute changes can
be as large as 25% and 33% of the critical Jχ=J1 and J2=J1,
respectively. While these will not drive the t1 Hubbard
model into a spin liquid, a material with sufficiently large
preexisting J2, due either to second neighbor hopping or

(a)

(b)

FIG. 3. Enhancement of magnetic couplings on the triangular
lattice as functions of fluence. (a) Absolute changes for CP light
with Ω ¼ 2U=3, where the enhancement is largest. J2=J1 and
J3=J1 can be enhanced by 0.03 and 0.01, respectively. These may
seem small, but are nearly 2000% and 500% of the equilibrium
values, as shown in (b), and are a significant fraction of the J2=J1
required for the Dirac spin liquid. The effective chiral field
reaches ∼0.05J1 [51], again a significant fraction of the critical
field. Ring exchange J□=J1 ranges between −0.09 and 0.02;
positive values eventually induce a spin liquid but must be
10 × larger. (b) Different types of unpolarized light drive differ-
ent paths through phase space, given in terms of the relative
enhancement. A dot indicates the initial equilibrium point
(A0 ¼ 0). Type I light (blue) samples the Poincaré sphere evenly,
type II Glauber light (red) samples all linearly polarized light
equally, and type II LCP/RCP (green) samples only the poles of
the Poincaré sphere, eliminating chiral fields. Note that the CP
light used in (a) gives identical results to type II LCP/RCP for J1,
J2, and J3.
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superexchange, could be tuned to both Dirac and chiral spin
liquids via different protocols. These absolute changes
understate the enhancement, as the equilibrium values
are tiny for the t1=U required to avoid heating, and the
enhancement of J2=J1 can be as large as 2000%.
Polarization protocols trace out unique paths through the

J2=J1–J3=J1 phase space, as shown in Fig. 3(b), where
J3=J2 varies by a factor of 2. Minimizing J3 is essential to
access the Dirac spin liquid, as J3 increases the critical J2
[34], and so type I or LCP and RCP averaged light is more
favorable than type II Glauber. Note that we show two
extremes of type II light (χ ¼ 0;�π=4), but all type II light
lies between these.
We have shown that unpolarized light provides an

untapped tuning parameter for Floquet engineering and
possibly nonequilibrium physics, in general, particularly
for correlated materials sensitive to higher-order correla-
tions in the polarization. We showed that calculations can
be done using Floquet techniques with fixed polarization
and then averaged, as long as the polarization vector varies
sufficiently slowly (Tp ≳ 10T). We illustrated this effect on
magnetic exchange couplings for the triangular lattice and
showed how different types of unpolarized light drive the
model through varied directions in phase space. In par-
ticular, the same J1–J2 triangular material could be nudged
into either Dirac or chiral spin liquids by different polari-
zation protocols. Similar effects should be found through-
out correlated materials. Future research might examine
incommensurate frequencies, where the pseudorandom
nature of the polarization variation may have interesting
effects.
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