
 

Near-Field Probe of Thermal Fluctuations of a Hemispherical Bubble Surface
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We report measurements of resonant thermal capillary oscillations of a hemispherical liquid gas interface
obtained using a half bubble deposited on a solid substrate. The thermal motion of the hemispherical
interface is investigated using an atomic force microscope cantilever that probes the amplitude of vibrations
of this interface versus frequency. The spectrum of such nanoscale thermal oscillations of the bubble
surface presents several resonance peaks and reveals that the contact line of the hemispherical bubble is
pinned on the substrate. The analysis of these peaks allows us to measure the surface viscosity of the bubble
interface. Minute amounts of impurities are responsible for altering the rheology of the pure water surface.
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Introduction.—The static properties of liquid interfaces
are to a large extent determined by the surface tension [1,2],
whereas thermal fluctuations roughen the interfaces [3–13].
For finite-size interfaces such as millimeter-size droplets,
the fluctuation spectrum consists of sharp resonance peaks
at well-defined frequencies, which are related to liquid flow
close to the surface [14]. In the case of droplets and bubbles
deposited on a solid surface, the vibrational modes satisfy
appropriate boundary conditions at the contact line.
Experimental studies of thermal capillary waves are

mainly performed using techniques such as x-ray reflec-
tivity [15], surface quasielastic light scattering [16,17],
optical interferometry [18–20], and high speed video
imaging [11,21]. Such techniques can also shed light on
the viscoelastic properties of surfaces and interfaces when
decorated by surfactants. These additives, even in minute
quantities can alter not only the surface tension, but may
result in a complex surface rheology and, in particular,
induce surface elasticity and surface viscosity [22–32].
These latter quantities remain difficult to be measured [31].
For sessile droplets or bubbles, additional challenges arise
from the contact line dynamics which has been investigated
with methods like Marangoni flow, evaporation, and
electrowetting [33–37]. Disturbing a sessile droplet with
an atomic force microscope (AFM), McGuiggan et al. [38]
observed the two lowest vibrational frequencies.
In this Letter we report on measurements of the thermal

capillary oscillations on the surface of a bubble deposited
on a solid substrate immersed in water. The hemispherical
shape of the bubble with its contact line pinned on the
substrate renders these oscillations resonant with well-
defined peaks in their frequency spectrum; we have
observed up to five peaks. The motion of the interface is
studied using a cantilever that measures the vibrations’
amplitude versus frequency. Our analysis of the frequen-
cies, widths, and spectral weight of the thermally excited

bubble vibrations shows that the contact line is indeed
pinned and allows us to determine the surface viscosity at
the bubble interface with a good precision.
Experimental setup.—Figure 1(a) shows the setup used in

our experiments. A glass surface was covered using spin
coating by a layer of polystyrene (PS) (thickness 100 nm and
roughness 0.2 nm). The air bubble was deposited on the PS
surface in ultrapure water (Milli-Q, Direct-Q5, 18.2 MΩ cm
at 25 °C, Millipore Inc) using a microsyringe. The bubble
was stable for several hours. During the experiment, we
bring an atomic force microscope (AFM) cantilever in
contact with the air bubble surface and measure its time-
dependent position, from which the spectral density of the

FIG. 1. (a) Experimental setup. The bubble was deposited on a
polystyrene (PS) surface, and the cantilever tip was used to probe
the vibration of the bubble. (b) Top view and (c) side view
images, from which we obtain the bubble radius R ¼ 592�
5 μm and the contact angle of 94� 2°.
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capillary fluctuations of the water-air interface was deter-
mined. The radius R and contact angle of the bubble were
determined from the top view [Fig. 1(b)] and side view
[Fig. 1(c)] optical images, respectively.
Experiments were performed using an AFM (Dimension

3100, Bruker) equipped with a liquid cell (DMFT-DD-HD)
that allows operation in a liquid, and two different canti-
levers (MLCT, Bruker, stiffness kc ¼ 0.024� 0.002 N=m
and CSG01, NT-MDT, stiffness kc ¼ 0.12� 0.02 N=m).
The position of the cantilever was controlled by the AFM
stepping motor stage allowing the cantilever to be brought
into contact with the north pole of the bubble. Once this
contact was established, the cantilever was driven solely by
the vibrations of the bubble. The maximum amplitude of
these vibrations was less than 1 nm. The vertical deflection
of the cantilever, due to these oscillations, was acquired by
an A/D acquisition board (PCI-4462, National Instrument,
USA). From the time series of the cantilever deflection
signal, the power spectral density (PSD) of the AFM
cantilever vibrations was calculated.
Resonance frequencies.—Typical PSD curves are shown

in Fig. 2(a). The blue curve was measured for the cantilever
in bulk water without bubble, showing the vibrational mode
of the cantilever with characteristic frequency near 4 kHz.
The main driving force for these cantilever fluctuations is
the thermal noise [39–42]. The red curve depicts the PSD of
the cantilever displacements when in contact with the
bubble. Note that once the cantilever is in contact with
the bubble surface, the cantilever resonance disappears and
only the thermally activated modes of the bubble surface
are observed. As a main finding, we observe well-defined
resonance peaks for the cantilever in contact with the
bubble, which we relate to thermal fluctuations of the
bubble shape. At a frequency near 5.5 kHz, outside of the
range of Fig. 2(a), the Minnaert resonance arising from
volume oscillations of the bubble [43] can be observed
(details are given in [44]). Coupling between the capillary
oscillations and volume oscillations may occur when the
resonance frequencies are very close. Care was taken to
avoid such coupling by performing our analysis for
resonance modes well below this peak.

For a spherical inviscid liquid drop of surface tension σ,
radius R, and fluid density ρ, Rayleigh predicted that the
square of the resonance frequencies of the drop oscillations
are multiples of [14]

ω2
0 ¼

σ

ρR3
: ð1Þ

A similar relation occurs for the resonances of a gas
bubble in a liquid [45]. For such drops or bubbles, each
vibrational mode can be described as an oscillating string
with an amplitude ξnðtÞ, satisfying the equation of motion

mnð̈ξn þ 2βn _ξn þ ω2
nξnÞ ¼ F nðtÞ; ð2Þ

with the effective mass mn, the damping coefficient βn, the
resonance frequency ωn which is some multiple of ω0 and
the mode number n. We use the shorthand notation
_ξn ¼ dξn=dt. As we postulated above, the driving force
F nðtÞ is due to thermal noise, which is assumed uncorre-
lated in time and independent for each mode. Taking the
Fourier transform of Eq. (2) and using the fluctuation
dissipation theorem jF nðωÞj2 ¼ 2βnmnkBT [46], we obtain
the one-sided power spectral density SðωÞ ¼ P

n jξnðωÞj2
in the form

SðωÞ ¼
X

n≥1

4βn
ðω2 − ω2

nÞ2 þ 4β2nω
2

kBT
πmn

: ð3Þ

Since the measured contact angle of our bubbles is very
close to 90°, they may be considered hemispherical.
The axisymmetric modes of a free bubble are described
by Legendre polynomials of even degree, P2nðcos θÞ
with the polar angle θ [14], which are labeled as
n ¼ 1; 2; 3;….
The solutions of odd degree are not compatible with the

presence of the solid boundary, since they would imply a
finite velocity normal to the solid surface.
The vibrational spectrum depends on the boundary

conditions for the oscillation amplitude at the solid surface.
If the contact line moves freely along the surface, the
capillary oscillations ξðt; θÞ ¼ P

n ξnðtÞP2nðcos θÞ are sim-
ply the even modes of a spherical bubble in an inviscid
liquid, where the natural frequencies ω̂n ¼ α̂nω0 are
given by α̂n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2n − 1Þð2nþ 1Þð2nþ 2Þp
[14,45,47].

In Eq. (1) it is the density of the fluid surrounding the
bubbles that is used [14,44,47,48]. For a pinned contact
line, on the other hand, the nonslip boundary condition
imposes the global constraint ξðt; θ ¼ π=2Þ ¼ 0. Then the
vibration amplitude of a single mode is a superposition of
even Legendre polynomials, ξnðtÞ ¼

P
k bnkP2kðcos θÞ,

with bnk < bnn. For contact angle 90° Lyubimov et al.
calculated the resonance frequencies ωn ¼ αnω0, where the
coefficients αn are solutions of the implicit equation
[38,44,49]

FIG. 2. Example of the measured PSD curves using a cantilever
with stiffness kc ¼ 0.12 N=m. (a) The thermal spectra of the
cantilever without the bubble (blue circles) and in contact with the
bubble (red circles) deposited on PS surface. (b) The spectrum
(circles) and the fitting curve using Eq. (3) (solid line) for the
third peak in (a).
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X

k≥1

ð2kþ 1Þð4kþ 1Þ
α̂2k − α2n

P2kð0Þ2 ¼ 0: ð4Þ

The above description of bubble oscillations extended to
the case of a half bubble resting on a solid surface with a
contact angle close to 90° can be compared quantitatively to
the results of Fig. 2(a).
Figure 2(b) shows a fit to one of the peaks of the PSDusing

Eq. (3).Such fits,whichaccountquantitatively for theshapeof
the peaks, allow us to determine the resonance frequency as
well as the effective mass and the damping coefficient for the
different mode numbers n. The values for the resonance
frequencies normalized by ω0 obtained from the PSDs of
different bubbles are plotted in Fig. 3(a). The results are best
accounted for using nonslip boundary conditions; contact line
pinning stiffens the vibrations and enhances the frequencies
with respect to those obtained for slip boundary conditions,
αn > α̂n. Indeed, the comparison of Fig. 3(a) where the
theoretical values for both nonslip and slip boundary con-
ditionsaredisplayedalongwith theexperimentalvalues, leads
to the conclusion that the contact line of our bubble does not
move on the surface but is pinned on the substrate. In the
following we always refer to ωn ¼ αnω0.
Effective mass.—In Fig. 3(b) we plot the effective mass

mn versus mode number n. These masses are extracted
from fits of the PSD to Eq. (3). Here data from different
bubble radii are displayed. Following Rayleigh [14], we
express the kinetic energy through the velocity potential
and integrate over the fluid volume [44,47,50] to obtain the
effective mass:

mn ¼
2πρR3

ð2nþ 1Þð4nþ 1Þ : ð5Þ

A comparison of Eq. (5) with the data for the measured
effective mass mn is shown in Fig. 3(b). The effective mass
has been normalized by R3 giving a reasonable collapse of

the data from different experiments using different bubble
radii. Apart from the mode at n ¼ 1, the data from different
realizations collapse on a single curve, and Eq. (5) accounts
quantitatively for the decrease of this effective mass with
the mode number n. The deviation at n ¼ 1 does not come
as a surprise: Eq. (5) has been derived with the assumption
of independent modes, which is plausible for higher modes
but much less for the first one. Note that the relative
difference between coupled and free modes, ωn and ω̂n, is
significantly larger for n ¼ 1 (see Table S1 in Supplemental
Material [44]).
Dissipation.—Nowwe turn to the damping coefficient βn,

which isdirectly related to thewidthof thepeaks inFig. 2(a). If
thevibrational frequencies havebeen treated in the framework
of potential flow of an inviscid fluid, damping arises from
additional interactions. In previous studies, two mechanisms
have been identified, which we refer to as viscous flow at the
interface and at the solid boundaries, and surfactant contami-
nation. At clean interfaces, viscous damping is the dominant
sourceofdissipation [48], arisingessentially fromthe flowina
surface layer of thickness δ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

2η=ρω
p

, where η is the
viscosity of the fluid surrounding the bubble. For frequencies
in the kilohertz range, the penetration depth δ is of the order of
ten microns, much smaller than the radius of our bubbles.
In this case, Rayleigh’s dissipation function is readily evalu-
ated, resulting in the viscous damping coefficient
[44,47,51,52]

βvisn ¼ 2η

ρ1=3σ2=3
ω4=3
n : ð6Þ

This expression does not account for dissipation on the
solid substrate. In a study of Faraday waves [53] with
nonslip boundary conditions at the container walls,
Milner [24] showed that the increase of velocity within
the penetration length δ results in a boundary contribution to
the damping rate ωδ=L, which is inversely proportional to

FIG. 3. (a) The results of the normalized resonance frequencies ωn=ω0 of the bubble versus the mode numbers. The black solid line
connects the resonance frequency for pinned contact lines, and the red solid line for a freely moving contact line, as given in the main
text. (b) The results of the effective mass normalized by the cubic power of the radius of the bubble versus the mode number for different
bubbles. The dots with different colors and shapes represent the different measurements for different bubbles. The black line represents
the theoretical results which was given by Eq. (5).
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the container size L. This leads us to estimate the boundary
damping coefficient βbn of the bubble oscillations as [44]

βbn ¼
3

ffiffiffi
2

p
η1=2

40ρ1=2R
ω1=2
n : ð7Þ

Besides the bulk-viscosity driven damping in (6) and (7),
there are surface-induced contributions, arising either from
an intrinsic surface viscosity [54] or from the contamination
with surface-active agents [22,25,31,32]. The case of an
infinite interface covered partially by contaminants, was
studied by Miles, including surface viscosity and elasticity
[22,32]. For the case of insoluble contaminants, Miles’
theory provides the damping coefficient βsn for capillary
waves

βsn ¼
ffiffiffi
2

p
η1=2ω7=6

n

4ρ1=6σ1=3
χ̂2 þ η̂ðη̂þ 2Þ

ðχ̂ − 1Þ2 þ 1þ η̂ðη̂þ 2Þ ; ð8Þ

with the dimensionless surface viscosity parameter η̂ and
elasticity parameter χ̂,

η̂ ¼
ffiffiffi
2

p
ρ1=6ω5=6

n

η1=2σ2=3
ηs; χ̂ ¼

ffiffiffi
2

p
ρ1=6

η1=2σ2=3ω1=6
n

χ: ð9Þ

The surface viscosity ηs includes both dilatation and
shear viscosities, which cannot be distinguished in our
experiment. The effective elasticity χ ¼ Γðdσ=dΓÞ0
accounts for the tangential Marangoni stress induced by
a change of the surfactant concentration Γ.
Figure 4 shows damping coefficients measured for

different bubble radii. The data are plotted versus the
resonance frequency. In the following we compare these

data in view of the theoretical result comprising both bulk-
viscosity and surface terms,

βtotn ¼ βvisn þ βbn þ βsn: ð10Þ
Note that the only free parameters are the surface

viscosity ηs and elasticity χ appearing in Eq. (9).
We start with the viscous-flow contributions. The coef-

ficient βvisn , plotted as a green dashed line in Fig. 4, captures
rather well the overall trend yet is about a factor of 2 smaller
than the experimental values. Adding the boundary term
hardly changes the picture, as is obvious from the red
dotted lines which give βvisn þ βbn for R ¼ 644 and 423 μm.
Evaluating (6) and (7) with η, ρ, σ of water, confirms the
inequality βbn ≪ βvisn . Since βbn is the only term in (10) that
depends explicitly on R, the above inequality also agrees
with the observation that the data measured for different R,
are independent of the bubble radius. Regarding the
absolute value, we conclude that viscous damping is not
sufficient to explain the measurements.
Surface viscosity.—The surface-related contribution to

the damping coefficient βsn depends both on surface viscosity
and elasticity, in terms of the dimensionless parameters η̂ and
χ̂. Assuming that one or the other dominates, we performed
two fits where either ηs or χ is set to zero. The comparison in
Fig. S3 [44] shows that χ ¼ 0 and finite surface viscosity ηs,
provide a much better description for the data, mainly
because of the prefactors in (9) which result in quite a
different frequency dependence. The black solid line in
Fig. 4 depicts the total damping coefficient βtotn , by account-
ing for both bulk and surface viscosities, where the latter
takes the value ηs ¼ ð1.5� 0.2Þ × 10−7 Pa sm.
In the above analysis, the surface viscosity is the only

adjustable parameter. The different contributions to Eq. (10)
are necessary for a satisfactory fit of the data from different
experiments; the contribution of the surface viscosity is
crucial for a better agreement with experimental values. The
black solid line of Fig. 4 results mainly from the super-
position of the viscous term βvisn ∝ ω4=3

n and the surface
viscosity term, which behaves roughly as βsn ∝ ω2

n [44].
In order to verify that the flow created by the vibrating

cantilever does not alter the dissipation and add an artifact
in the damping coefficients, we have performed measure-
ments with two cantilevers of different dimensions,
one of stiffness kc ¼ 0.024 N=m, widthw ¼ 22 μm, length
l ¼ 208 μm, and a second one with kc ¼ 0.12 N=m,
w ¼ 34 μm, l ¼ 350 μm. Because of the larger dimensions
of the second cantilever, any effect of the cantilever beam
on the damping coefficient should be significantly stronger
than that of the first one. Yet Fig. 4 shows that there is no
difference in the damping coefficients, which leads us to the
conclusion that there is no unwanted backreaction of the
vibrating cantilever on the bubble dynamics.
The fitted value of ηs is about ten times larger than those

reported by Earnshaw [54] for a pure water surface and
Zell et al. [31] for soluble surfactant covered interfaces.

FIG. 4. Damping versus the frequency for different bubbles.
The green dashed line corresponds to the viscous damping βvisn as
in Eq. (6). The red dotted lines correspond to viscous damping
plus boundary damping (βvisn þ βbn), with βbn for R ¼ 644 and
423 μm. The black solid line is calculated from Eq. (10) and
accounts for all terms in Eq. (10), including βsn with the surface
viscosity is ηs ¼ ð1.5� 0.2Þ × 10−7 Pa sm.
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The discrepancy could be due to the fact that in the present
work, the surface viscosity measured accounts both for
surface dilatational viscosity as well as surface shear
viscosity. Further, we believe that our measurements are
not devoid of surface contamination. In fact, in our previous
study [55], despite the fact that a careful protocol was
applied to minimize surface impurities, the air-water sur-
face was found to be prone to contamination rather quickly
with drastic effects on the properties of the water-air
interface even for minute quantities of contaminants. We
believe that there are similar effects here. Remarkably, our
experimental technique is capable of probing the surface
viscosity with a high precision. This is shown by Fig. 4
where the bulk effects are well below the measured
damping rates. We hypothesize that coupling such a
technique with precise techniques for measuring surface
shear viscosities (such as that of Zell et al. [31]) provides a
reliable technique to pin down the surface rheology of
interfaces with various surface-active agents and disen-
tangle dilatational from shear viscosities.
In conclusion, our experiments demonstrate that the

AFM cantilever technique developed here is a powerful
tool to probe the thermal capillary fluctuations of bubble
surfaces. The spectrum of the fluctuations presents sharp
resonance peaks for specific frequencies for which the
motion of the interface is much more important than for
other frequencies. Our measurements demonstrate that the
contact line of a half bubble resting on a solid surface is
pinned on the substrate and allows us to measure the
additional damping due to the presence of minute amounts
of contaminants. Moreover, our experimental method
provides a useful new tool to probe the surface rheology.
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Capillarity and Wetting Phenomena: Drops, Bubbles,
Pearls, Waves (Springer-Verlag, New York, 2004).

[2] J. Rowlinson and B. Widom, Molecular Theory of
Capillarity (Clarendon Press, Oxford, 1982).

[3] L. Turski and J. Langer, Dynamics of a diffuse liquid-vapor
interface, Phys. Rev. A 22, 2189 (1980).

[4] M. Sferrazza, C. Xiao, R. A. L. Jones, D. G. Bucknall, J.
Webster, and J. Penfold, Evidence for Capillary Waves at
Immiscible Polymer/Polymer Interfaces, Phys. Rev. Lett.
78, 3693 (1997).

[5] J. Meunier, Liquid interfaces: Role of the fluctuations and
analysis of ellipsometry and reflectivity measurements, J.
Phys. 48, 1819 (1987).

[6] H. Kim, A. Rühm, L. Lurio, J. Basu, J. Lal, D. Lumma, S.
Mochrie, and S. Sinha, Surface Dynamics of Polymer Films,
Phys. Rev. Lett. 90, 068302 (2003).

[7] Y. Hennequin, D. G. A. L. Aarts, J. H. van der Wiel,
G. Wegdam, J. Eggers, H. N. W. Lekkerkerker, and D.
Bonn, Drop Formation by Thermal Fluctuations at an
Ultralow Surface Tension, Phys. Rev. Lett. 97, 244502
(2006).

[8] D. Derks, D. G. Aarts, D. Bonn, H. N. Lekkerkerker, and A.
Imhof, Suppression of Thermally Excited Capillary Waves
by Shear Flow, Phys. Rev. Lett. 97, 038301 (2006).

[9] M. Fukuto, O. Gang, K. J. Alvine, and P. S. Pershan,
Capillary wave fluctuations and intrinsic widths of coupled
fluid-fluid interfaces: An x-ray scattering study of a wetting
film on bulk liquid, Phys. Rev. E 74, 031607 (2006).

[10] A. M. Willis and J. B. Freund, Thermal capillary waves
relaxing on atomically thin liquid films, Phys. Fluids 22,
022002 (2010).

[11] D. G. A. L. Aarts, M. Schmidt, and H. N.W. Lekkerkerker,
Direct visual observation of thermal capillary waves, Sci-
ence 304, 847 (2004).
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