
 

Rising and Sinking in Resonance: Mass Distribution Critically
Affects Buoyancy-Driven Spheres via Rotational Dynamics

Jelle B. Will * and Dominik Krug †

Physics of Fluids Group and Max Planck Center Twente, J. M. Burgers Centre for Fluid Dynamics,
University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

(Received 7 December 2020; accepted 7 April 2021; published 30 April 2021)

We present experimental results for spherical particles rising and settling in a still fluid. Imposing a well-
controlled center of mass offset enables us to vary the rotational dynamics selectively by introducing an
intrinsic rotational timescale to the problem. Results are highly sensitive even to small degrees of offset,
rendering this a practically relevant parameter by itself. We further find that, for a certain ratio of the
rotational to a vortex shedding timescale (capturing a Froude-type similarity), a resonance phenomenon
sets in. Even though this is a rotational effect in origin, it also strongly affects translational oscillation
frequency and amplitude, and most importantly, the drag coefficient. This observation equally applies to
both heavy and light spheres, albeit with slightly different characteristics for which we offer an explanation.
Our findings highlight the need to consider rotational parameters when trying to understand and classify
path properties of rising and settling spheres.
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A single particle settling or rising in a still fluid is one
of the most intuitive and conceptually simple problems in
fluid mechanics. However, the complexity arising from
coupling between the motion of the body and the surround-
ing flow is intricate, and the resulting complex trajectories
[1–6] have fascinated researchers, including Da Vinci [7]
and Newton [8], for centuries. Moreover, single particle
dynamics often persist in particle-laden flows [9] and
affect global properties of a system such as sedimentation
rate, transport of heat or nutrients in a fluid [10], or mix-
ing for chemical reactors [11,12]. Beside the scientific
appeal, a fundamental understanding of the behavior of
individual particles is, therefore, of primary importance in
understanding larger systems in nature and industrial
applications.
Despite long-standing efforts, the understanding even for

the most basic geometry of a sphere is still incomplete to
date [13,14]. The traditional notion is that the two-way
coupled dynamics for this case depend on two dimension-
less parameters only: the particle-to-fluid mass density ratio
Γ≡ ρp=ρf, and the particle Galileo number Ga≡UbD=ν
[15,16]. Here, D is the particle diameter, ν the kinematic
viscosity of the fluid, and Ub ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij1 − ΓjgDp
is the buo-

yancy velocity with g denoting the acceleration due to
gravity. In relating buoyancy and viscous forces, Ga is
similar to the Reynolds number Re≡ huziD=ν, where huzi
is the mean vertical velocity (with h·i denoting a time and
ensemble average) which is not known a priori, however.
A significant amount of work was aimed at classifying

the motion of spheres and differences in their wake struc-
tures as a function of Γ and Ga [13,16–20]. However, there

still exists substantial disagreement even on fundamental
aspects. For example, it remains open why there are
conflicting results for the parameter range for which
strong path oscillations are observed [15,17–26]. The lack
of a universal description alludes to the possibility that
additional—yet largely unexplored—parameters may play
a role. In fact, recently, the importance of rotational
dynamics for spheres and 2D cylinders has been high-
lighted [14,27,28], showing that the moment of inertia
(MOI, governed by the internal mass distribution) can
affect the vortex shedding mode, the frequency and
amplitude of oscillation, and the vertical velocity. The
key physical mechanism behind this rotational-translational
coupling is the Magnus lift force, which, in a still fluid, is
given by Fm ∼ ω × u [29], with ω and u denoting particle
angular and linear velocity vectors, respectively. It has been
suggested that the dependence on particle MOI can be one
of the factors contributing to the spread in particle drag
coefficient as well as causing differences in oscillation
amplitude [14], but conclusive evidence, in particular for
spheres, is missing.
In this Letter, we systematically explore the effect of

rotational dynamics on rising and settling spheres. To this
end, we modify the rotational properties of the spherical
particles in a controlled manner by introducing a center of
mass (c.m.) offset γ ≡ 2l=D, where l is the distance along
the unit vector p pointing from the c.m. to the geometrical
center [see Fig. 1(a)]. Clearly, such an offset can also be
expected to occur in a host of practical applications, where
particle properties are rarely ever uniform. This concerns,
for example, the falling of dandelion seeds [30] and
snowflakes [31–35], the sedimentation behavior of sand
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grains and stones [36,37], chemical and biological reactors
with (inverse) fluidized beds [38], as well as the transport of
microplastic in the oceans [39]. Moreover, the practical
relevance is rooted in the fact that we find that even small
values of γ can affect the kinematics and dynamics of
spherical particles significantly. Despite their apparent
relevance, c.m. offsets are often listed more generally as
potential sources of experimental uncertainty (e.g., [5]), but
few studies have considered γ explicitly. To our knowledge,
the relevance of this parameter was first noted by Jenny
et al. [17] who report that the trajectory of a settling sphere
with Ga¼ 180was destabilized when introducing an offset
of γ ≈ 5% (originating from air bubbles occasionally
trapped inside their particles). More recently, it was shown
that lateral motion of spheres in a linear shear flow was
reduced by presence of a strong offset [40]. While both of
these studies clearly underline the relevance of γ as a
parameter, the accounts remain anecdotal and a complete
understanding based on systematic variation is lacking still.
For completeness, it should be mentioned that the role of
mass asymmetry has also been examined in the context of
cylindrical or fiberlike particles [41–43]. However, due to
the anisotropic geometry, the dynamics in these instances
are completely different from the spherical case consid-
ered here.
We start our analysis from the classical Kelvin-Kirchhoff

equations [44], which, for a suspended sphere, are given by�
1þ 1

2Γ

��
du
dt

þω × u

�
¼ Ff

mp
þ ð1 − ΓÞg

Γ
ez; ð1Þ

1

10
I�
dω
dt

¼ Tf

mpD2
−

γ

2D
ðac þ gezÞ × p: ð2Þ

Here, Ff and Tf are the fluid force and torque applied to
the body, respectively, and ez is the vertical unit vector.

Further, we define the dimensionless MOI I� ≡ Ip=IΓ as
the ratio of the particle MOI over the MOI of a sphere
with a uniform density distribution IΓ ¼ 1=10mpD2, where
mp is the particle mass. Note that the linear momentum
balance [Eq. (1)] remains unaffected by the choice of γ.
Equation (2) represents the angular momentum balance
around the center of the sphere, in which the effect of the
c.m. offset appears in the form of the cross product on the
right-hand side. Apart from γ, the magnitude of this term
also depends on the included angle θz between p and ez [see
Fig. 1(a)], and on ac, the acceleration of the center of mass.
For spheres, the geometric center and the center of

pressure coincide. Therefore, the forcing term Tf in Eq. (2)
is solely due to skin friction, which, for Re⪆275 [45],
provides an approximately periodic driving associated with
the vortex shedding in the wake of the body [46].
Neglecting the additional dependence on ac, the offset
term acts as a restoring torque. Thus, Eq. (2) is similar to a
periodically forced pendulum with a natural frequency
fp ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5γg=DI�
p

=2π and the corresponding timescale
τp ¼ f−1p . The driving, due to vortex shedding, is charac-
terized by τv ∼D=Ub, and on this basis, we define the ratio

T ¼ τv
τp

¼ 1

2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5γ

j1 − ΓjI�
s

: ð3Þ

Note that T is entirely determined by particle properties. In
relating translational (Ub) and dissipative (D=τp) veloc-
ities, T corresponds to the inverse of the Froude number
defined in [47] for falling strips. However, the definition in
Eq. (3) is preferred, here, as it avoids a singularity at γ ¼ 0.
To test the effect of variations in T , laboratory experi-

ments were performed for rising (blue) and settling spheres
(red symbols) in a still fluid with systematic variations in
Ga, γ, and Γ. An overview over the explored parameter
range is shown in Fig. 1(c). Particles, D ¼ 12–25 mm,
were released to settle or rise in a large vertical water tank.
After an initial transient (> 20D), the position and ori-
entation of the spheres were tracked over a distance of
≈30–80D using optical methods [48,49]. Details of the
setup and the postprocessing of the data are provided in the
Supplemental Material [50] that also includes movies of
rendered trajectories at Ga ¼ 1800.
The profound effect variations in γ have on particle

kinematics is exemplified in Fig. 2(a), where horizontal
projections (XY plane) of drift corrected trajectories for the
Ga ≈ 1800 (rising) case are shown. From these plots, it is
obvious that the oscillation amplitude varies significantly
with γ and even vanishes for the most extreme offset.
Simultaneously, the shape of the oscillations also transi-
tions from mostly planar to circular and then back to a more
planar motion with additional precession as γ is increased.
A similar behavior is observed across all Ga and Γ for rising
particles. For Γ > 1, we observed a similar increase in

(a) (c)

(b)

FIG. 1. (a) Schematic of a sphere with c.m. offset. (b) The
particle Frenet-Serret (TNB) coordinate system, with unit vectors
T (parallel to u), N (pointing in the direction of curvature of the
path), and B (defined such that N ¼ B × T). The angles ϕ
(azimuth) and θ (elevation) uniquely define a vector in this
space. (c) Explored parameter space. Grey shading indicates the
resonance regime and T isocontours correspond to I� ¼ 1.
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amplitude but not the associated helical and precessing
trajectories. Unlike reported at lower Ga [13], we did not
encounter significant horizontal drift here.
As a first quantitative measure, we extract the frequency

f of the horizontal path oscillations. Sample results for
three cases in the inset of Fig. 2(b) reveal that f varies
significantly with γ with a remarkable sensitivity even at
small offsets. All cases display a similar pattern relative to
their respective pendulum frequency fpðγÞ (dashed lines):
At small γ, f exceeds fp, but the two quickly converge as
the offset is increased resulting in a resonance (f ≈ fp)
between the path oscillations (and hence, the vortex
shedding) and the rotational dynamics of the particle.
For offsets greater than those at resonance, fp quickly
outgrows the shedding frequency, and path oscillations
damp out (resulting in large variations in f in this regime).
Resonance occurs at different values of γ for different
particles. However, all data collapse when plotting f=fp
against T as is done in the main panel Fig. 2(b). This
confirms that T is, indeed, the relevant parameter gov-
erning the behavior of particles with c.m. offset, and we
identify the resonance range as 0.08 ⪅ T ⪅ 0.14, where
f=fp ≈ 1� 0.2 (marked by grey shading in all figures). A
similar lock-in phenomenon of the wake to object oscil-
lations was observed earlier for forced translational oscil-
lations of beams in a cross flow [51,52]. A key difference
and a remarkable feature of the present results is, however,
that, here, vortex shedding dynamics are governed by a
parameter that is intrinsically rotational.
The resonance behavior revealed for the frequencies also

has a direct imprint on other parameters, such as the
normalized oscillation amplitude â=D shown in Fig. 3(a)
for both heavy and light particles. At T ¼ 0, scatter in â=D
is considerable owing to variation in Ga, I�, and Γ.
However, these differences vanish and the variation of
â=D as a function of T becomes remarkably similar across

all cases tested, rendering this the dominant parameter once
a small but finite offset (γ > 0) is introduced. Amplitudes
are largest in the resonance band with a peak of â=D ≈ 1
located at T ≈ 0.09 for both rising and settling particles.
Consistent with the observation in Fig. 2(a), path oscil-
lations vanish at large T in all cases, and it appears that the
decrease in â=D beyond resonance is steeper for larger
values of Γ. While the resonant behavior in terms of f=fp
and â=D is very similar for heavy and light particles,
remarkably, the same is not true for the drag coefficient
Cd ¼ 4Dj1 − Γjg=3hvzi2t shown in Fig. 3(b). For rising
spheres, there is almost a factor of 2 increase in Cd in the
resonance regime as compared to the T ¼ 0 case. In
contrast, the Cd results appear virtually insensitive to
any changes in T for settling spheres.
A clue pointing to the cause of this surprising behavior

is given by the results for the rotational amplitude θ̂z in
Fig. 3(c). The resonance peak for θ̂z is prominent at low Γ
reaching values even beyond 90°, but remains weak for
Γ > 1. In all cases, the rotational amplitude vanishes for
higher T , for which f < fp. Indeed, the scaling θ̂z ∼ T −2,
which follows from a quasistatic assumption using Tf ∼
ρfD3U2 [53,54], appears to capture the decay of θ̂z with
increasing T well in this regime. Such a simple argument
fails, however, to reproduce the prefactor properly for
which the suggested ðΓI�Þ−1 dependence is weaker than
the actual variation in the data. Dynamically, the rotation
rate is more relevant than θ̂z, and it further provides a more
robust measure, even at γ ¼ 0. Therefore, we additionally
consider the mean rotation rate hωi in Fig. 3(d) and observe
a good agreement between the trend of this quantity and
that of Cd as a function of T . This indicates that, instead of
the path oscillation amplitude (which features a resonance
peak even for Γ > 1), the particle drag correlates better with
the rotational energy of the spheres.

FIG. 2. (a) Characteristic trajectories of rising particles (Ga ≈ 1800 and Γ ≈ 0.80) as seen from the top for different values of T . The
length of the horizontal blue lines represent the corresponding amplitudes â=D. (b) Inset: f (symbols) and fp (dashed lines) vs γ for
three different Ga values. Main figure: ratio f=fp vs T for the entire dataset. (c) Normalized histograms of the orientation of ω in the
TNB coordinates for the cases corresponding to (a). The histograms contain data of all particles with nominally the same parameters.
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In evaluating the nature of the rotational-translational
coupling, it is useful to consider the Lagrangian Frenet-
Serret coordinate system [T, N, B, see Fig. 1(b)], which is
defined with respect to the path of the sphere [14,29,55]. In
Fig. 2(c), we have included histograms of the orientation of
ω in the TNB coordinate frame corresponding to the
sample trajectories displayed in Fig. 2(a). Especially for
the resonance cases (T ¼ 0.096 and T ¼ 0.137), ω is
found to align strongly with B. This implies that the normal
acceleration (alongN) is consistent with the direction of the
Magnus lift force in this state, since Fm ∼ ω × u. In
addition to the fact that no significant path oscillations
are observed in the absence of particle rotation at high T
(Fig. 3), this underlines the crucial role rotational dynamics
play for the path oscillations. The alignment betweenω and
B in the resonance range is slightly less pronounced at
Γ > 1 (see Supplemental Material [50]) but remains a
robust feature for all cases considered here. While light
particles at T outside resonance display distinct alignments
away from B, this is not observed at Γ > 1, as rotational
amplitude quickly vanishes in those cases.
With the relevance of the driving via the Magnus force

established, it is then possible to analyze the phase relation
between a forcing parameter and a system response.Wedo so
by evaluating the phase angleΔΦ between the projections of
the acceleration a and of the Magnus lift force Fm along an
arbitrary horizontal direction. By definition, particle accel-
eration lags behindMagnus lift forcing forΔΦ < 0 and vice
versa for ΔΦ > 0. The results for ΔΦ in Fig. 3(e) display a
collapse as a function of T with a zero crossing (at T ≈
0.12� 0.01) within the resonance band. The latter is in line
with the findings in Fig. 2(c) and implies an enhancement of
path oscillations through Fm. Therefore, a key feature of the
resonance is that rotational-translational coupling is coherent
with other forcing (e.g., through pressure forces induced by
vortex shedding), while the two are less correlated, other-
wise. Interestingly, ΔΦ ≈ 0° occurs at T ≈ 0.12, at which
rotations are strongest, whereas the phase lag is nonzero at
the peak in â=D (ΔΦ ≈ −45° at T ≈ 0.09).
The question remains, why the settling spheres have

such a pronounced deficit in rotational dynamics compared
to rising ones. An explanation for this is related to the

difference in alignment between the direction of offset p
(always pointing up) and the mean direction of motion, that
switches between rising and settling particles. Therefore, a
Magnus lift force in the same direction is associated with
rotations in opposite directions between the two cases, as
the inset in Fig. 3(e) shows. This is relevant because the
torque induced by the lateral acceleration due to Fm
[proportional to γac × p, see Eq. (2)] then either enhances
(rising particles) or counteracts (settling) the rotation rate
ω. Therefore, rotational amplitudes are suppressed for
heavy particles via this mechanism. In the resonance
regime, Fm strongly aligns with the direction of normal
acceleration N, such that translational accelerations due to
other forces also amplify the effect in this case.
Finally, to put our results into perspective, we compare

them to compiled literature data in terms of Cd vs Re in
Fig. 4. The range of Cd in the present measurements is seen
to cover the full spread in the literature data with matching
bounds, indicating that, at least at this level, the dynamics
explored here are comparable to those encountered (nomi-
nally) without c.m. offset. The fact that, here, this variation
arises from altering only the rotational dynamics is
testament to the crucial importance of related parameters
such as I� and γ. Therefore, incorporating these appears
necessary for a complete description of the problem.
Moreover, there is a longstanding notion [20], with mention
already by Newton [8], that high levels of Cd are associated
with large path amplitudes â=D. This is clearly at odds with
our results at Γ > 1 (but, also, with findings by others

(a) (b) (c)

(d)

(e)

FIG. 3. Dependence on T for (a) amplitude of the path oscillations â=D, (b) particle vertical drag coefficient Cd, (c) particle rotational
amplitude θ̂z, (d) time averaged angular velocity hωi, (e) phase angleΔΦ between horizontal particle acceleration and Magnus lift force.
All data points represent averages over multiple experiments with the same particle.

FIG. 4. Particle drag coefficients for rising and settling spheres
compiled from literature (black dots) [17,19–22,25,26,57–63],
and present data (color coded by T ) vs Re ¼ huziD=ν.
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[13,17,49,56]), where Cd remains low even though â=D is
significant. Our analysis suggests that Cd is, instead, more
closely related to particle rotations.
In summary, we have provided strong evidence for how

critically the overall behavior of free rising or sinking
spheres in the vortex-shedding regime is related to their
rotational dynamics. The revealed sensitivity to c.m. offsets
as small as γ ¼ 0.5% is remarkable, and therefore, this
parameter is likely to play a role in many practical cases. In
particular, it might affect the behavior of spheroidal bubbles
[64], which are known to display spiral or zigzag motion
when rising in a contaminated liquid [65–67]. In that case, a
c.m. offset might arise due to the fact that surfactants are
swept to the back of the bubble by the flow and we estimate
(assuming Γ → 0 and I� ¼ 1) that γ ≈ 5% would suffice to
reach a T value in the resonance regime. Clearly, the
present findings are also useful to tailor particle behavior. In
the future, it will be of particular interest to broaden the
investigation to turbulent flow. Given how easily and
effectively their resonance behavior can be tuned, c.m.
spheres may be efficient means to “shape” turbulence by
very selectively enhancing specific frequencies in the flow.
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