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We introduce a dynamic stabilization scheme universally applicable to unidirectional nonlinear coherent
waves. By abruptly changing the waveguiding properties, the breathing of wave packets subject to
modulation instability can be stabilized as a result of the abrupt expansion a homoclinic orbit and its fall
into an elliptic fixed point (center). We apply this concept to the nonlinear Schrödinger equation framework
and show that an Akhmediev breather envelope, which is at the core of Fermi-Pasta-Ulam-Tsingou
recurrence and extreme wave events, can be frozen into a steady periodic (dnoidal) wave by a suitable
variation of a single external physical parameter. We experimentally demonstrate this general approach in
the particular case of surface gravity water waves propagating in a wave flume with an abrupt bathymetry
change. Our results highlight the influence of topography and waveguide properties on the lifetime of
nonlinear waves and confirm the possibility to control them.
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The parametric stabilization of unstable dynamics is a
fascinating and long-standing problem, the paradigmatic
example being the Kapitza pendulum [1], i.e., the dynamic
stabilization of a pendulum around its inverted position by
fast oscillating its pivot.
Dynamic stabilization is still effective for nonlinear and

dispersive waves which are intrinsically infinite dimen-
sional, unlike nonlinear control theory and feedback
schemes. Applications range from dispersion management
in fiber laser and communications [2] to control of non-
linear waves in many-body quantum physics [3], diffractive
optics [4], matter waves [5], or water waves [6]. However,
dynamic stabilization requires a spatially extended perio-
dicity, and alternative stabilization and control schemes of
nonlinear waves are needed [7].
Here, we introduce theoretically and validate experi-

mentally such a nonlinear wave stabilization based on
abruptly changing the propagation conditions, expanding a
phase-space trajectory homoclinic to a saddle point [8,9].
Generically, this trajectory contains a family of closed
orbits, converging to a single point known as center. The
phase-space manipulation stabilizes the system evolution
around the center, suddenly freezing the growth stage of a
breather wave envelope at its peak height.
Unlike Kapitza or feedback schemes, such an expansion

is induced by a controlled, local and abrupt variation of a
single parameter affecting both the nonlinearity and the
dispersion of the wave system. As an example, we apply

this concept to unidirectional water surface gravity waves
subject to the ubiquitous phenomenon of modulational
instability (MI) of Stokes waves or Benjamin-Feir instability
[10–13]. The evolution of such unstable waves can be
described by the universal nonlinear Schrödinger equation
(NLSE) [14]. MI entails the exponential growth of a slow
modulation on top of a carrier wave of uniform amplitude
possibly yielding to the formation of extreme waves.
Remarkably, the continuation of MI in the fully nonlinear
(strongly depleted) stage as modeled by Akhmediev breath-
ers (ABs) is equivalent to a homoclinic pendulumlike phase-
space structure [15–19], where the background behaves as a
saddle point, while two centers are represented by two out of
phase stationary periodic wave envelopes, the dnoidal
solutions of the NLSE [20,21]. The unstable AB orbit
describes the amplification of sidebands up to a peak and
the asymptotic return to the background [22]. Since it
separates two qualitatively different types of periodic evo-
lutions undergoing Fermi-Pasta-Ulam-Tsingou (FPUT)
recurrences, the AB is a separatrix in the wave system phase
space [19,23,24].
We demonstrate the possibility to stabilize such an

unstable homoclinic orbit by matching it to one of the
steady dnoidal solutions. The matching is strictly forbidden
by the Hamiltonian structure of the NLSE for unperturbed
MI evolutions. Instead, we parametrically perturb the
system by abruptly (i.e., faster than the MI characteristic
distance) increasing the water depth and, thus, changing the
dispersion and nonlinearity experienced by the envelope.
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This causes a strong dilation of the AB orbit at its apex and,
ideally, the fall of the trajectory over the center (dnoidal
envelope). This blocks the FPUT recurrence and freezes the
breather at its peak.
The proposed separatrix dilation is somehow opposite to

the common phenomena of wave shoaling responsible for
the increase of wave amplitude, typical for the depth
decrease in coastal areas [25–28]. On the other hand, an
increase of water depth in the direction of wave propagation
can still occur in the ocean, mostly in surf zones like
sandbars and coral reefs. The present mechanism can also
occur where the NLSE provides a leading-order description
of nonlinear MI, such as Bose-Einstein condensation [29]
and optics, where quasi-stabilization has been interpreted in
terms of solitons [30]. Indeed, this approach can be
extended to other models with a homoclinic structure
[31], and even to settings such as parametric resonance
described by strongly nonintegrable models [32].
A NLSE-like equation was derived for the one-

dimensional and unidirectional evolution of the envelope
of surface water waves on an uneven bottom of depth h at
frequency ω ¼ ffiffiffiffiffiffiffiffi

gkσ
p

, with σ ≡ tanh κ and κ ≡ kh, k being
the local wave number, which varies with h, while ω is
fixed [26]. The slope of the depth step in the propagation
direction x should be sufficiently small to prevent
wave reflections due to wave number mismatches:
h0ðxÞ ¼ Oðε2Þ, with ε≡ ka the wave steepness, a being
the carrier wave amplitude. Applying the method of
multiple scales up to Oðε3Þ to the inviscid irrotational
water wave problem yields the evolution equation [26,33],

i
∂V
∂ξ þ β

∂2V
∂τ2 − γ̃jVj2V ¼ 0; ð1Þ

where Vðξ; τÞ is the shoaling-corrected envelope of the
free-surface elevation [34,35], ξ≡ ε2x, and τ≡
εfR x

0 ½dζ=cgðζÞ� − tg (t being the physical time) are the
coordinates in a frame moving at the envelope group
velocity, cg ≡ ∂ω=∂k ¼ ðg=2ωÞ½σ þ κð1 − σ2Þ�.
Here γ̃ ≡ γ½cgðξ ¼ 0Þ=cgðξÞ� is the shoaling-induced

correction of the standard nonlinear coefficient γ, and β
is the group-velocity dispersion. They only depend on κ
[33], with β < 0 regardless of κ (only surface gravity waves
are considered [33]) and γ̃ ≥ 0 for κ ≥ 1.363, so that βγ̃ < 0
(in this focusing regime cg monotonically decreases, and
shoaling only increases slightly the effective nonlinearity γ̃;
see Supplemental Material Sec. S1 [36]).
The NLSE (1) conserves only the mass N ≡ R

∞
−∞ jVj2dτ

and the momentum P≡ ImfR∞
−∞ V�ð∂V=∂τÞdτg, which

we use in our numerical simulations to ensure the integra-
tion precision. Moreover, we introduce the quantities
A≡ V=V0, X ≡ ξ=Lnl, T ≡ τ=Tnl, where V0 is the ampli-
tude of the input plane wave (carrier), while Lnl ¼ 1=ðγ̃V2

0Þ
and Tnl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jβjLnl

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jβj=ðγ̃V2

0Þ
p

are the associated
characteristic nonlinear length and temporal scales,

respectively. This allows us to cast Eq. (1) into the
dimensionless focusing NLSE:

i
∂A
∂X −

1

2

∂2A
∂T2

− jAj2A ¼ 0: ð2Þ

We let the depth increase from h0 to h∞ > h0 over a a
distance Lstep, with ðh∞ − h0Þ=ε2 ≪ Lstep ≪ Lnl, to pre-
vent spurious reflections [26], while remaining essentially
local compared to the envelope scale of variation Lnl. The
normalization of Eq. (2) changes from before to after the
bathymetry change. Assuming a fixed mass N (shoaling
being negligible), two different families of solutions of
Eq. (2) can be matched across the change (henceforth,
superscripts 0 and ∞ denote the physical quantities before
and after the change).
First, we consider the AB solution [22],

AABðT; XÞ ¼

2
641þ

ðΩ0Þ2
2

cosh bX þ ib sinh bXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΩ0Þ2

4

q
cosΩ0T − cosh bX

3
75eiX;

ð3Þ

where Ω0 is the initial normalized MI sideband detuning
and b≡Ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðΩ0Þ2=4

p
the linear MI gain. This solution

exists only for 0 ≤ Ω0 ≤ 2, is periodic in T, and evolves in
X connecting two homogeneous plane wave states of unit
amplitude at X → �∞ [Fig. 1(a)]. It thus corresponds to
the separatrix of infinite-dimensional NLSE.

FIG. 1. Principle of AB conversion into a dnoidal solution of
the NLSE. (a) Space-time evolution of the AB for a normalized
detuning Ω0 ¼ 1.67. (b) Dnoidal solution for normalized detun-
ing Ω∞ ¼ 1.34. (c) Best matching of Fourier coefficients of the
AB [at the peak distance, blue shading in (a)] to the dnoidal
solution. Inset: superimposed time profiles. (d) Phase plane
trajectories of AB and dnoidal for Ω0 (blue solid line and circle)
and Ω∞ (red dashed line and cross). Arrows show the effect of
separatrix dilation.
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Second, recall the dnoidal solutions [20],

AdnðT; X;mÞ ¼ αdn½αT;m�eiχ2X; ð4Þ

where α ¼ χ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð2 −m2Þ

p
, and χ a constant to be deter-

mined. The parameter 0 < m < 1 implicitly defines the
solution period: Tdn ¼ 2K=α, where K ≡ KðmÞ is the
complete elliptic integral of the first kind [37]. This solution
has a steady amplitude profile and generalizes the soliton
solution for T-periodic boundary conditions [Fig. 1(b)]. It
is the infinite-dimensional counterpart of a center in a
Hamiltonian system.
We seek m that matches the breather solution AABðT; XÞ

to a steady profile AdnðT; X;mÞ at a given stage X of the
evolution. This will stabilize (“freeze”) a strongly modu-
lated nonlinear state.
Considering the phase invariance of the NLSE and the

realness of the AB at its peak position X ¼ 0, we choose
A0
AB ≡ −AABðT; 0Þ to have positive maxima and negative

minima [A0
AB;max;min ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 − ðΩ0Þ2

p
], inset of Fig. 1(c)

corresponding to the shaded blue plane of Fig. 1(a). We
expand this real-valued wave form in Fourier series
A0
ABðTÞ ¼ c00 þ

P
n≠0 c

0
neinΩ

0t [38], with

c00 ¼ ðΩ0 − 1Þ; c0n ¼ Ω0

�
2 −Ω0

2þ Ω0

�jnj=2
ð5Þ

[Fig. 1(c)]. The dnoidal profile that best matches A0
AB

must first be real valued like the AB. Therefore, we
take A∞

dnðTÞ≡ AdnðT; 0Þ. Second, the maxima α ≥ 0 at
T ¼ kTdn and minima α

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −m

p
≥ 0 at T ¼ Tdn=2þ kTdn

of AdnðT; XÞ must coincide to those of the AB.
Third, neglecting shoaling, the conservation of N implies
α2 ¼ K=E [37], where E≡ EðmÞ is the complete elliptic
integral of the second kind. Finally, the normalized
detuning in the MI band corresponding to a particular
dnoidal solution is derived by well-known formulas [37],
as Ω∞ ≡ πα=K ¼ π½KE�−1=2.
The problem is thus reduced to finding the value of Ω∞

that best matches A0
ABðTÞ to A∞

dnðTÞ. The latter expands in
Fourier series:

c∞0 ¼ Ω∞

2
; c∞n ¼ Ω∞ qjnj

1þ q2jnj
; ð6Þ

with q≡ qðmÞ the elliptic nome.
We require that the main (continuous) components are

equal; i.e., c00 ¼ c∞0 . The comparison of Eqs. (5) and (6)
yields

Ω∞ ¼ 2ðΩ0 − 1Þ; ð7Þ

providing the main theoretical result of our work. It simply
links the two normalized pulsations across the depth

change for optimally matching an AB to a steady dnoidal
envelope. Clearly, the envelope matching requires that the
physical sideband detuning fm remains the same, whereas
in Eq. (7) the pulsations Ω0;∞ ¼ 2πfmT

0;∞
nl differ on the

two sides (0, ∞) because of the change in T0;∞
nl , which

accounts for the local depth. Thus, Eq. (7) is equivalent to
T∞
nl ¼ 2T0

nl − ðπfmÞ−1 allowing us to determine κ∞ given
κ0. Note also that Ω∞ ≥ Ω0 for 0 ≤ Ω0 ≤ 2: this is
consistent with the requirement h∞ > h0, because Tnl
decreases monotonically with κ and h; see the
Supplemental Material Sec. S1 [36].
Figure 1(c) compares the spectra of the AB and the

dnoidal, when Eq. (7) is fulfilled. The sidebands (n ≥ 1)
match satisfactorily. Small unavoidable discrepancies
induce small oscillations around the dnoidal (matching
more than one cn is possible for the trivial case Ω0 ¼
Ω∞ ¼ 2 only, i.e., vanishing jump and MI band edge). This
is also obvious from the phase-space representation of the
matching process [(Fig. 1(d)], where the variables ðψ ; ηÞ
are, respectively, the relative phase and sideband fraction of
the two families of solutions (see Refs. [18,32,39] and the
Supplemental Material Sec. S2 [36]). The optimal jump
[Eq. (7)] leads the separatrix apex (ψ ¼ 0) before the jump
(blue solid line) to closely approach the center (red cross)
standing for the dnoidal after the phase-space dilation
induced by the jump. Indeed, the nonperfect superposition
of the (blue) separatrix apex and the (red) center is
responsible for small oscillations around the dnoidal after
the jump. These small oscillations around the maximum
breather compression point are still nonlinear, because the
energy is periodically exchanged between different side-
band pairs. Note that this approach can be adapted to near-
separatrix conditions, as detailed in Supplemental Material
Sec. S3 [36].
Our approach establishes that AB freezing is favored forffiffiffi
3

p
< Ω0 < 2, since A0

AB stays positive like A∞
dn (for 0 ≤

Ω0 ≤
ffiffiffi
3

p
the AB takes negative values, inaccessible to the

dnoidal family). However, in Fig. 1 and in the experiment,
we operate slightly below Ω0 ¼ ffiffiffi

3
p

to increase the MI
gain, but still the temporal profiles show a very good
matching [inset of Fig. 1(c)].
Our theoretical results allow us to design an experimen-

tal realization in a the 30 × 1 m2 water wave flume of The
University of Sydney [Fig. 2(a)]. Rigid aluminium plates,
each 2 m long, have been lifted from the bottom of the tank
to allow a flat floor with constant depth h0 ¼ 32.4 cm up to
the distance x ¼ 12.35 m and h∞ ¼ 55.2 cm from x ¼
14.28 m with a constant slope in between.
The initial conditions feature a carrier at a central

frequency f0 ¼ 1.53 Hz slowly modulated with frequency
(sideband detuning) fm ¼ 0.18 Hz to form an AB focusing
at x ¼ 10.28 m [40]. These carrier and modulation
frequencies are within reach of the wave maker
(f ≤ 2 Hz). This implies κ0 ¼ 3.06 and κ∞ ¼ 5.02, and
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the initial steepness is ε ¼ 0.14, most likely preventing
wave breaking. With these parameters, we obtain
Ω0 ¼ 1.67 <

ffiffiffi
3

p
, allowing us to observe one FPUT cycle

within the tank length. Eight resistive wave gauges char-
acterized the wave train evolution before, during, and after
the depth transition. The first gauge is used to reconstruct,
by conventional Hilbert transform and bound mode filter-
ing [41], the envelope used for numerical integration of the
NLSE [Eq. (1)], including linear dissipation resulting from
inclined beds [42].
We compare the experimental traces with and without

the bathymetry step. We observe that the former [Fig. 2(b)]
still exhibits a train of clearly modulated pulses at the end of
the tank, while the latter [Fig. 2(c)] qualitatively recurs to
the initial state. This is particularly evident by comparing
traces at x ¼ 22.65 m and x ¼ 24.3 m. This is the first
strong evidence of stabilization.
In order to quantitatively reconstruct the phase-space

trajectories described above and map them, we directly
Fourier transform the surface elevation to extract the
amplitude of the central mode and of the (unstable) �Ω
and (stable) �2Ω sidebands [Fig. 2(d)], as well as the
relative phase ψ between the carrier and the unstable
sidebands [Fig. 2(f)]. The �Ω sidebands grow until
x ≈ 14 m, i.e., where the depth step (gray band) stabilizes
them to a relatively constant value, preventing the FPUT
recurrence. The central mode evolves complementarily.
Simultaneously, the relative phase of the first sideband
pair stops growing. NLSE simulations reproduce quanti-
tatively this behavior, with a stabilization of the sidebands
to a high value and a stop to the growth of the sideband
phase [Figs. 2(h) and 2(j)]. This behavior contrasts with
both the measurements [Figs. 2(e) and 2(g)] and the
simulation [Figs. 2(i) and 2(k)] on a uniform depth, for
which the FPUT recurrence is expected to occur before
the end of the flume while the relative phase ψ grows
steadily. The small discrepancy between the focal point of
the AB chosen as initial condition and the actual mea-
sured value ascribe to dissipation [24] and to higher-order
physical effects, disregarded in the NLSE [43,44]. We
interpret the small decay (growth) of η0 (η1) just after the
depth jump as due to a partial reflection of the wave on the
transition region, yielding imperfect energy transfer or to
a small inaccuracy in gauge calibration.
Sidebands at �2Ω stay below 6%. Therefore, we can

safely rely on the reduced set of variables introduced
originally in Ref. [18] and recently employed in nonlinear
fiber optical experiments [19,39] (see Supplemental Material
Sec. S2 [36]). In Fig. 3(a) we map the experimental
trajectories onto the plane of Fig. 1(d) and compare them
to simulated results. While over a flat bottom the system is
ejected outside of the separatrix and displays unlocked phase
growth, the bathymetry step forces the trajectory inside the
separatrix, clearly shown by phase locking at ψ ≈ 0.

(a)

(b) (c)

(d) (e)

(f) (g)

(h) (i)

(j) (k)

FIG. 2. (a) Water wave flume with artificial floor setup. One
end shows the piston-type wave maker and the other end an
inclined wave absorber with an artificial grass layer. Top:
positions of the wave gauges. (b) Wave height at each recorded
position for the experiment with variable bathymetry, multiplied
by a factor 20; the gray stripe indicates the position of the step.
(c) Wave height at each recorded position for the experiment with
constant bathymetry, multiplied by a factor 20. (d)–(k) Sideband
evolution of the AB-type surface water wave over the adopted
bathymetry with the depth step (d),(f),(h),(j), and the constant flat
bottom h0 (e),(g),(i),(k). (d)–(g) Sideband dynamics as identified
from the eight gauge measurements, connected by a linear
interpolation; (h)–(k) corresponding NLSE-simulated evolution.
(d),(e),(h),(i) Sideband fractions η0, η1, η2 of modes at frequen-
cies 0 (carrier), �Ω, and �2Ω, respectively. (f),(g),(j),(k)
Phase ψ of first-order sidebands (modes at �Ω) relative to
the carrier frequency, i.e., η0 ≡ jV̂ðξ; 0Þj2=N, η1 ≡ ½jV̂ðξ;ΩÞj2þ
jV̂ðξ;−ΩÞj2�=N, and η2 ≡ ½jV̂ðξ; 2ΩÞj2 þ jV̂ðξ;−2ΩÞj2�=N, and
ψ ≡ ½ðϕ1 þ ϕ−1Þ=2� − ϕ0, with ϕn ≡ Arg½V̂ðξ; nΩÞ�, where V̂
denotes the Fourier transform of V.
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By estimating Tnl from the depth, carrier frequency, and
the experimental value of V0

ffiffiffiffi
N

p
, we derive the normalized

detuning values: before the step, at x ¼ 8.95 m, Ω0 ≈ 1.67,
while after, at x ¼ 14.40 m, the value of Ω∞ ≈ 1.34 is
indeed very close to the theoretical optimal as in Eq. (7).
The effect of the depth step is even more visible by

looking at the contrast C≡ 1 − ½min jUj=max jUj� of the
temporal envelope modulation, averaged over all the
modulation cycles comprised in the measured waveform
[Fig. 3(b)]. The contrast rises to 1 in the AB focusing region
(“inspiration” of the AB). On a flat bottom, it symmetri-
cally decays after the focus (AB “expiration”) due to the
FPUT recurrence. Conversely, the bathymetry step locks
the contrast to its maximum value. NLSE simulations
reproduce well this behavior. Analogous experimental
results can be achieved for near-AB conditions (see
Supplemental Material Sec. S4 [36]).
To summarize, we have found a theoretical condition to

dynamically stabilize unstable nonlinear waves. While the
approach applies to any system described by the NLSE, and
could therefore be easily generalized to other dynamical
models, we have experimentally confirmed our finding for
the specific case of wave hydrodynamics. A sharp change
in water depth simultaneously modifies the dispersion and
nonlinearity experienced by surface gravity wave packets,
thus dramatically modifying their dynamical behavior. In
the case of ABs, the separatrix expands and ends up
enclosing the system trajectory, which is stabilized around
an elliptic fixed point, i.e., a center. This jump can be
described as the optimal matching of an initial AB solution
to a steady dnoidal solution of the universal NLSE,
illustrating the generality of this wave control process.
This approach contrasts with that of a slow evolution of the
system over several envelope oscillations, that also results
in system stabilization [35], and from stabilization mech-
anisms relying on dissipation [45].
We anticipate that this cross-disciplinary approach will

be further explored in other nonlinear dispersive media and

will improve understanding of nonlinear wave control and
transformation through a change of the waveguiding and
consequently wave propagation characteristic parameters.
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