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Dissipation dilution enables extremely low linear loss in stressed, high aspect ratio nanomechanical
resonators, such as strings or membranes. Here, we report on the observation and theoretical modeling of
nonlinear dissipation in such structures. We introduce an analytical model based on von Kármán theory,
which can be numerically evaluated using finite-element models for arbitrary geometries. We use this
approach to predict nonlinear loss and (Duffing) frequency shift in ultracoherent phononic membrane
resonators. A set of systematic measurements with silicon nitride membranes shows good agreement with
the model for low-order soft-clamped modes. Our analysis also reveals quantitative connections between
these nonlinearities and dissipation dilution. This is of interest for future device design and can provide
important insight when diagnosing the performance of dissipation dilution in an experimental setting.
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Introduction.—In recent decades, micro- and nanome-
chanical systems have attracted widespread interest in
science and technology [1,2]. They constitute outstanding
sensors for force [3], mass [4], radiation [5], and temper-
ature [6], to name just a few examples. Simultaneously,
they are promising building blocks for future quantum
technologies, such as microwave- or spin-to-optical quan-
tum transducers [7,8] or quantum memories [9].
Low thermomechanical noise and correspondingly long

mechanical coherence times are crucial for these applica-
tions and are typically limited by energy dissipation from
the mode of interest. Considerable effort has therefore gone
into designing mechanical resonators with minimal dis-
sipation, leading to great advances in recent decades.
Beyond mitigating all external losses, e.g., due to the
surrounding gas or the device substrate, important progress
was made in suppressing loss to internal degrees of free-
dom, such as two-level systems. By storing the majority of
the mechanical mode’s energy in a lossless potential,
dissipation dilution [10] has emerged as a successful
strategy in this endeavour. It can be utilized in highly
stressed nanomechanical string and membrane systems,
where the elongation energy assumes the role of the
lossless potential [11–15].
We have recently introduced an extension of this

approach—soft clamping—to engineer mechanical

resonance modes particularly conducive to dissipation
dilution in phononic crystal membranes [16].
Soft clamping has allowed realizing nanomechanical

resonators with the highest Q factors (> 108) and Qf
products (> 1015 Hz) yet observed at room temperature
[16–19]. For the vast majority of mechanical systems, it is
sufficient to consider dissipation in the linear regime, i.e.,
when the quality factor is independent of the displacement
amplitude [1]. Some instances of nonlinear dissipation in
nanomechanical systems have been reported, for example,
in nanoresonators made from diamond [20], carbon nano-
tubes, and graphene sheets [21], but without providing a
clear explanation as to the origin of this effect. Here,
we investigate nonlinear effects in soft-clamped membrane
resonators with very high Q factors. Whereas the Duffing
frequency shift has been observed in stressed nano-
mechanical resonators before [22–24], we focus on non-
linear damping here [19,25].
Starting from a full 3D model (von Kármán theory), we

derive analytical expressions for both the Duffing
frequency shift and nonlinear damping, similar to what
has been derived for a string [2]. This analysis furthermore
reveals strong connections to dissipation dilution, both
being linked to geometric nonlinearities.
A series of systematic experiments yields good quanti-

tative agreement with the model for low-order soft-clamped
modes. We thereby establish not only a means to quanti-
tatively predict nonlinear losses—as relevant, e.g., for
parametric sensing protocols [26]—but also introduce a
new experimental tool for assessing dissipation dilution.
Model.—We describe the motion of a thin membrane, of

thickness h. The xy plane coincides with the one of the
undeformed membrane.
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The displacement of the mass element located at
position rðx; y; zÞ is quantified by the vector ui, where
Latin indexes represent the three directions x, y, z.
The membrane’s deformation due to the motion of the
mass elements is expressed by the strain tensor εij ¼
ð∂jui þ ∂iuj þ ∂iuz∂juzÞ=2. The deformation induces
stresses within the structure, described by the stress tensor
σij. We consider elastic materials, for which the induced
stresses are linear in the strain tensor and Hooke’s law
holds [27]. For thin membranes with no external loads,
stress components associated with the z direction are
negligible, i.e., σiz ¼ 0. The membrane’s displacement can
then be decomposed into the out-of-plane displacement
uzðx; y; zÞ≡ wðx; yÞ and the in-plane displacement
uαðx; y; zÞ ¼ vαðx; yÞ − z∂αwðx; yÞ, where Greek indexes
represent the in-plane coordinates x and y, and vα is the in-
plane displacement. For amplitudes relevant to this work,
the in-plane displacement components are negligible with
respect to the out-of-plane components [confirmed with
finite element method (FEM) simulations]. Therefore, we
apply the so-called out-of-plane approximation and neglect
them [28]. Furthermore, our model includes a static in-
plane deformation ε0ðx; yÞ representing the static strain
required for dissipation dilution. The shear components of
the stress tensor ðσ0Þxy are negligible in the structures
considered. Within these approximations, we can write the
strain and stress tensors, according to von Kármán theory
[27,28], as

εαβ ¼ ε0δαβ − z∂αβwþ 1

2
∂αw∂βw; ð1Þ

σαβ ¼
E

1 − ν2
½ð1 − νÞεαβ þ νεγγδαβ�; ð2Þ

where E is the Young’s modulus, ν is the Poisson’s ratio,
δαβ is the Kronecker delta, and repeated Greek indexes are
summed over.
To introduce dissipation, we assume a time delay τ in the

stress-strain relation, as a phenomenological model for
microscopic relaxation processes intrinsic to the resonator
material [2]. For small and constant time delay (relative to
mechanical period), the stress tensor can be approximated
as σðtÞ ¼ H½εðtþ τÞ� ≈H½εðtÞ� þ τH½_εðtÞ�, where H is a
linear functional expressing Hooke’s law and _ε stands for
the time derivative of the stress tensor. The dissipation
arises from the additional term proportional to τ. The
equation of motion for out-of-plane displacement is

ρhẅ − ∂αβMαβ − ∂βðNαβ∂αwÞ ¼ 0; ð3aÞ

∂βNαβ ¼ 0; ð3bÞ

where the stress resultants Nαβ and Mαβ are the shear force
components and bending momenta, respectively. They are
given by Nαβ ¼

R
σαβdz and Mαβ ¼

R
zσαβdz, where each

integral is performed over the membrane thickness. As both

stress resultants contain terms proportional to the time
delay τ, they generate both linear and nonlinear dissipative
processes, as we shall see. Typically, Eqs. (3) are difficult
to solve due to nonlinearity in the displacement w.
For small w, we neglect nonlinear terms and retrieve a
solvable linear equation, yielding a set of normal modes
wηðx; y; tÞ ¼ ϕηðx; yÞuμðtÞδημ, where η indexes different
vibrational modes and we have separated the time-depen-
dent mode amplitude uμðtÞ from the dimensionless trans-
verse spatial profile ϕηðx; yÞ. We use this set of transverse
modes as a basis to expand a solution of the full nonlinear
equation of motion; that is, wðx; y; tÞ ¼ ϕηðx; yÞuηðtÞ. We
insert this ansatz in Eq. (3), then project it into a single
transverse mode ϕi by applying the Galerkin method
together with a single mode approximation that neglects
intermodal coupling [29]. Finally, we obtain the following
effective nonlinear equation for the temporal mode ui:

üi þ Γi _ui þ γnli u
2
i _ui þΩ2

i ui þ βiu3i ¼ 0; ð4Þ

which describes a damped Duffing resonator [22,23],
including a nonlinear damping term [19,25,30–32]. The
effective parameters in Eq. (4) are defined as

Ω2
i ¼ m−1

eff

Z
ϕiðD∂ααββϕi − hσ0∂ααϕiÞdA; ð5aÞ

βi ¼
k1
2

Z
ϕið∂αβϕi∂αϕi∂βϕi þ k2∂ααϕi∂βϕi∂βϕiÞdA;

ð5bÞ

Γi ¼ τDm−1
eff

Z
ϕi∂ααββϕidA; ð5cÞ

γnli ¼ k1τ
Z

ϕið∂αβϕi∂αϕi∂βϕi þ k2∂ααϕi∂βϕi∂βϕiÞdA;

ð5dÞ

where the integrals extend over the whole membrane
surface, meff ¼ ρh

R
ϕ2
i dA is the effective mass, D ¼

Eh3=½12ð1 − ν2Þ� is the flexural rigidity, and we have
introduced the constants k1 ¼ −hE=½meffð1 − ν2Þ� and
k2 ¼ ν=ð1 − νÞ. Notably, the two nonlinear terms are
purely geometric effects and they are not introduced by
the material itself.
As expected, we find both the linear (Γi) and nonlinear

(γnli ) dissipation proportional to the lag time τ. In the
context of dissipation dilution, the linear dissipation is
commonly expressed as

Γi ¼
1

DQ;i

Ωi

Qintr
; ð6Þ

where DQ;i ≫ 1 is the dissipation dilution factor, deter-
mined by the geometry of mode i [10–16]. The resonator’s
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material properties enter via the intrinsic quality factor
Qintr ¼ ðΩiτÞ−1, which we use interchangeably with the
material’s loss angle θlin ¼ Q−1

intr. In dissipation-diluted
devices, one expects to measure enhanced (linear) quality
factors

Qmeas ≔
Ωi

Γi
¼ DQ;iQintr ¼ DQ;iθ

−1
lin ; ð7Þ

compared to resonators made from the same material in
absence of dissipation dilution (e.g., unstressed). In this
setting, DQ;i and Qintr are not separately accessible through
measurement.
Turning to nonlinear effects, we note that the Duffing

frequency shift (βi) and nonlinear damping (γnli ) depend on
the mode pattern identically, yet their ratio depends on the
lag time τ and thence on the intrinsic loss. We therefore
introduce the nonlinear loss angle

θnl ≔
γnli Ωi

2βi
; ð8Þ

which notably depends only on quantities that can be
experimentally measured through large-amplitude excita-
tion (see below). Importantly, Eqs. (5) suggest

θnl ¼ Ωiτ ¼ θlin; ð9Þ

which would imply access to the intrinsic linear damping
through measurement of a device’s nonlinear properties.
Experimental results.—Our experimental subjects are

highly stressed 3.6 × 3.6 mm soft-clamped Si3N4 mem-
brane resonators [16], shown in Fig. 1(b), operated at room
temperature and pressures lower than 10−7 mbar to reduce
gas damping to a negligible value. We expect intrinsic
material dissipation to dominate and the theoretical frame-
work derived above to apply since radiation losses of the
vibrational defect modes are shielded by the honeycomb
phononic crystal pattern. Nonlinear phenomena are present
during free decay evolution as amplitude-dependent damp-
ing and shift of the mechanical resonance frequency. To
observe these effects, we employ ringdown techniques and
measure mechanical displacement with a fiber-based opti-
cal Mach-Zender interferometer [Fig. 1(a)]. After excitation
to a large amplitude, we stop driving and monitor the
displacement decaying with a heterodyne detector, from
which we extract both the displacement amplitude Ai and
phase, thus the instantaneous frequency Ω0

i. The displace-
ment amplitude and frequency evolve according to [19]

δΩiðtÞ≡Ωi −Ω0
i ¼

3

4
ωsD
i A2

i ðtÞ; ð10Þ

AiðtÞ ¼
Ai0e

−Γi
2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ γnli

4Γi
A2
i0
ð1 − e−ΓitÞ

q : ð11Þ

Equation (10) is the standard backbone equation [22,23],
while Eq. (11) describes a nonexponential decay, induced
by the nonlinear damping [25,30]. We have also introduced
the Duffing shift per displacement, ωsD

i ≔ βi=ð2ΩiÞ,
such that the nonlinear loss angle defined in Eq. (8)
becomes θ−1nl ¼ 4ωsD

i =γnli .
In Figs. 1(c) and 1(d), we show an example of nonlinear

amplitude decay and frequency shift as a function of
displacement amplitude. The nonlinear parameters are
extracted from the best fit. Importantly, the values of both
ωsD
i and γnli depend on the displacement calibration [19],

however, their ratio θnl is independent of that. Notice that
deviation from linear decay starts appearing for displace-
ment amplitudes comparable to the membrane thickness
[32], as expected when the bending at the membrane edges
has been eliminated (soft clamping). From the amplitude
decay fit, we extract the linear damping rate Γi and
calculate Qmeas.
We perform five ringdown measurements on every

individual mode, then average the results. Ringdowns
are discarded if relative errors on fit parameters are greater
than 10%, using a 95% confidence interval. For each
membrane, we characterize the nonlinear parameters of
four defect modes lying in the band gap from 1.30 to
1.55 MHz (see Supplemental Material [33]). Statistics are
collected from 6 to 12 nominally identical membranes.
Because of the presence of outliers within this ensemble,
we evaluate and report the median and median absolute
deviation as robust estimators of the ensemble statistics

1550 nm

Lock-inT = 293K
p  10-7mbar

AOM

PZT

(a)

(c) (d)

0 10 20 30 40 50

0

100 Data
Best fit

50

0 20 40 60

100

10-1
Data
Best fit
Lin. dec.

(b)

FIG. 1. (a) Optical interferometer for displacement measure-
ment [acousto-optic modulator (AOM), piezoelectric actuator
(PZT)]. The detection is realized with a heterodyne receiver.
(b) Soft-clamped membrane pattern. (c) Nonlinear amplitude
decay for 19-nm-thick membrane and corresponding fit. Linear
exponential decay (gray) is extrapolated to highlight deviation
arising from nonlinear damping. (d) Duffing frequency shift as a
function of displacement amplitude and corresponding fit. The
abscissa is the fit result from (c).
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[34]. The measurement protocol stated above is repeated
for membranes of different thickness, with all nonlinear
parameters reported in Fig. 2. (The values obtained for
mode 3 of two membranes were discarded since a negative
Duffing shift was observed).
We simulate the parameters according to Eqs. (5b) and

(5d), where the transverse profile of each mode is obtained
by FEM simulations. For modes 1 and 2 we find very
good agreement for all investigated thicknesses in the range
19–100 nm. For thicker membranes, we observe excess
nonlinear damping in modes 3 and 4, though the Duffing
nonlinearity still matches predictions. Possible origins of
this deviation are discussed below.
By comparing nonlinear and linear losses experimen-

tally, we now examine the hypothesis of Eq. (9). In Fig. 3,
the measured linear quality factorsQmeas are plotted against
extracted θ−1nl . Per our hypothesis, the measured quality
factor cannot exceed the function Qmeas¼! DQθ

−1
nl , which

follows from Eq. (7) if Eq. (9) is correct. The dilution factor
for each mode is obtained from FEM simulations, as
described earlier [16]. This relation should hold indepen-
dent of material quality, which may vary between fabrica-
tion runs.
Linear loss angles of silicon nitride thin films have been

extracted from a large number of resonator data reported in
the literature [35]. The expected range is represented by the
gray area, where the gray line is the average value. If the
hypothesis (9) holds, θ−1nl (abscissa in Fig. 3) should also
fall in this range.
Although each point should ideally fall between the two

lines, additional losses can be introduced during fabrication
and handling. The data points would then have larger loss
angle but still lie on the oblique line. On the other hand,
imperfect dissipation dilution (e.g., damaged structures,
residual gas damping, or radiation loss) would lead to data
points lying below the oblique line. The regions not
explained by these mechanisms are shown as hatched.
We observe that the vast majority of the measurements are
within the expected region. For the first two modes, most
points lie close to the intersection, corroborating our
hypothesis. The points’ location with respect to the

intersection then gives an indication of possible imperfec-
tions in the sample.
Nonlinear loss angle measurements for different thick-

nesses are shown in Figs. 3(e)–3(h). We compare this to the
phenomenological model of the linear loss angle as a
function of membrane thickness

θlinðhÞ ¼ Q−1
intrðhÞ ¼ Q−1

vol þ ðβshÞ−1; ð12Þ

where Qvol ¼ ð2.8� 0.2Þ × 104 and βs ¼ ð60�
40Þ nm−1 [35]. Measured θnl for modes 1 and 2 agree
with the model for the θlin, within error, supporting our
hypothesis. However, the data for modes 3 and 4 show an
evident deviation for larger thickness. This is consistent
with the excess nonlinear damping observed in Figs. 2(c)
and 2(d). The source of this excess nonlinear damping is
unclear. Since the isolation provided by the phononic
shield for these two modes is, in general, worse [16], we
speculate that this can lead to nonlinear energy exchange
mediated by vibrational modes of the supporting silicon
frame [36].
Lastly, we characterize the intrinsic losses as a function

of temperature (cf. Fig. 4). Ringdown measurements were
performed on mode 1 of a 19-nm-thick membrane inside a
dilution refrigerator, at temperatures ranging from 20 mK
to 1 K. We use 100 nW of optical power at 830 nm
impinging on the membrane, to minimize heating from
absorption of optical radiation [37]. An additional reference
measurement is taken at room temperature. As reported
previously [37–40], we observe an increase of linear quality
factor with decreasing temperature. We find θnl decreases in
unison with the linear loss over nearly four orders of
magnitude span in temperature, in line with our hypothesis.
Our new analysis also gives two insights of potential use for
further experimental optimization: (a) saturation of the
decrease in θnl at around 100 mK suggests that the sample
might not thermalize properly to lower temperatures, and
(b) near 109 the measured linear Q factors stop following
θnl, suggesting the presence of additional linear, undiluted
dissipation.

(a) (b) (c) (d)
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16

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

Mode 1 Mode 2 Mode 3 Mode 4

FIG. 2. Nonlinear parameters. (a)–(d) Measured nonlinear parameters as a function of membrane thickness h. Blue (green) points are
the Duffing (nonlinear damping) parameters ωsD

i (γnli ), estimated from the median of each statistical ensemble. Dashed lines represent
simulated values for the Duffing (blue) and nonlinear damping (green) parameters.
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Conclusion.—Our Letter sheds light on the origin of
nonlinear damping in dissipation-diluted nanomechanical
resonators. We have developed an analytic theory based on
a continuum elastic model for large deflections of a thin
membrane. The geometric nonlinearity arising from the
material elongation modifies both the conservative and
dissipative dynamics, in the form of Duffing frequency
shifts and a nonlinear damping. We observe these nonlinear
effects in soft-clamped, ultracoherent membrane resonators
and find good agreement with our model.

We introduce the nonlinear loss angle θnl and show that
it can be extracted from ringdown measurements without
displacement calibration. Our model hypothesizes θnl is
equal to the linear loss angle, which is otherwise not
separately accessible by measurement. We find substantial
evidence supporting this hypothesis across a wide array of
mode shapes, geometric parameters, and temperatures.
These insights deepen our understanding of nonlinear
behavior in this important class of nanomechanical
resonators and can guide design of future generations
of ultracoherent mechanical sensors [16–18], especially
with regard to sensing protocols [26]. Finally, the
tools developed here yield additional insight in the
performance and loss contributions of dissipation-diluted
resonators.
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FIG. 3. Nonlinear loss angles. (a)–(d) Measured quality factors against θ−1nl . The gray line is the expected θ
−1
lin [35] and gray area is the

uncertainty in that value. The black line is the limitQmeas ≤ DQθ
−1
lin with a dissipation dilution factorDQ obtained from simulations. The

hatched area is inaccessible under the most obvious sources of excess dissipation. (e)–(h) Measured θ−1nl as a function of the membrane
thickness. The stars represent the median of the points shown in (a)–(d). The gray line is the θ−1lin as a function of thickness, expressed in
Eq. (12), whereas the gray area reflects the uncertainty in the parameters.
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FIG. 4. Nonlinear loss angles at different temperatures. (a) Mea-
sured θ−1nl as a function of the cryostat temperature Tmxc. The gray
line is a polynomial fit, roughly showing the behavior. (b) Mea-
sured quality factors versus θ−1nl , taken at room temperature
(orange) and cryogenic temperatures (blue). The gray line is the
expectation value of θ−1lin at room temperature, and the gray area
reflects uncertainty [35]. The black line is the simulated quality
factor, from the dissipation dilution factor DQ1

. Error bars are the
mean absolute deviation among three repetitions.
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