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In ultrafast multimode lasers, mode locking is implemented bymeans of saturable absorbers or modulators,
allowing for very short pulses. This occurs because of nonlinear interactions of modes with well equispaced
frequencies. Though theory predicts that, in the absence of any device, mode locking would occur in random
lasers, this has never been demonstrated so far. Through the analysis of multimode correlations we provide
clear evidence for nonlinear mode coupling in random lasers. The behavior of multiresonance intensity
correlations is tested against the nonlinear frequency matching condition equivalent to the one underlying
phase locking in ordered ultrafast lasers. Nontrivially large correlations are clearly observed for spatially
overlapping resonances that sensitively depend on the frequency matching condition to be satisfied,
eventually demonstrating the occurrence of nonlinear mode-locked mode coupling. This is the first example,
to our knowledge, of an experimental realization of self-starting mode locking in random lasers, allowing for
many new developments in the design and use of nanostructured devices.
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When light propagates through a random medium, the
electromagnetic field provides a complicated emission
pattern as light undergoes multiple scattering. In random
lasers [1–8] such scattering allows for population inversion
under external pumping. Random lasers are made of an
optically active medium, providing gain, and randomly
placed scatterers, providing the high refraction index and
the feedback mechanism leading to amplification by
stimulated emission. They do not require complicated
construction and rigid optical alignment, have a low
cost, undirectional emissions, high operational flexibility
and give rise to a number of promising applications in the
field of speckle-free imaging [9,10], remote sensing
[11,12], medical diagnostics [13–16] and optoelectronic
devices [17,18]. Many works have been devoted to the
random laser mode control, e.g., by tuning concentration
of scatterers [2], by changing pumping profile [19] or
temperature [20,21], and else gain material [22] in a
number of diverse approaches [23–25]. Effective engi-
neered control requires a deep knowledge of the physical
mechanisms underlying the behavior of random lasers.
Here we investigate one of these mechanisms in the
presence of intrinsic, nonperturbative, randomness.
We exploit a statistical mechanical model of light modes

interacting in a random medium excited by external
pumping to extract information about fundamental mech-
anisms of a random laser. Our aim is understanding
whether a random laser built without specific technological
requirements exhibits the basic feature of standard pulsed

lasers: mode locking. Standard laser theory shows that the
dominant mode interaction above threshold is highly non-
linear [26]. In the random laser case, mode couplings are
predicted to be disordered, both in the interaction network
and in the coupling values. Therefore, the understanding of
cross-mode interactions is an open issue and fundamental
questions need to be answered about their strength, sign,
and number of simultaneously involved modes.
Clearly, modes must spatially overlap to display mode

locking [27–29], as observed in experiments on specifically
designed random lasers, where pairwise (linear) interaction
manifests because of two modes competition for the overall
intensity within the same optical volume [19]. In Ref. [30] a
step towards nonlinear mode locking was taken, including a
graphene saturable absorber to yield a quasi mode locking
of coherent feedback in random fiber laser. With the
assistance of the saturable absorber, resonant modes are
selected and mode locked. Spatial overlap is not, however,
a sufficient condition for interaction, nor does it provide
any information about the coupling values. At the same
time, the exact structure of the spatial distribution of the
modes in most random lasers is hard to determine, which
makes a quantitative analysis of the interacting parameters
rather hard. Eventually, there is no saturable absorber in
random lasers and a possible nonlinear matching of
frequencies, that is, the locking of more than two modes,
would occur as a self-starting phenomenon [31].
We have developed an analysis of random systems of

interacting light modes providing information about the
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mode-coupling constants and applied it to the emission
spectra of a GaAs powder-based random laser, experimen-
tally demonstrating the nonlinear coupling of spatially
overlapping modes and its mode-locking nature.
Although the mode-locking phenomenon is known to be

nonlinear and light modes are expected to be coupled, the
mechanism and nature of this nonlinear coupling in random
lasers has never been experimentally tested. The theory for
stationary regimes in a random laser consists in an effective
stochastic nonlinear potential dynamics for the mode slow
amplitudes aðtÞ (see Supplemental Material [32]) whose
Hamiltonian reads

H ¼ −
X

k2jFMCðkÞ
gð2Þk1k2

ak1a
�
k2

−
1

2

X

k4jFMCðkÞ
gð4Þk1k2k3k4

ak1a
�
k2
ak3a

�
k4
þ c:c:; ð1Þ

where FMC stands for the frequency matching condition,

jωk1 − ωk2 þ ωk3 − ωk4 j < γ; γ ≡X4

j¼1

γkj ; ð2Þ

where ωk is the angular frequency of the mode k and γk’s
are the linewidths of the resonances. Further complexity of
the mode interaction is comprised inside the coupling
coefficients

gð4Þk1k2k3k4
∝
Z

V
drχ̂ð3Þðr;ωk1 ;ωk2 ;ωk3 ;ωk4Þ

..

.
Ek1ðrÞEk2ðrÞEk3ðrÞEk4ðrÞ; ð3Þ

where χ̂ð3Þ is the nonlinear susceptibility tensor of the
medium and EkðrÞ is the eigenmode of frequency ωk.
In standard lasers FMC is induced by nonlinear devices

[26] and it induces phase locking [33–35] and ultrashort
pulses [26,36–41]. In random lasers no ad hoc device is
present in the resonator and even the definition of resonator
is far from straightforward [42]. Consequently, mode
locking would be, in this case, a self-starting phenomenon
due to randomness.
Contrarily to standard multimode lasers [43,44], in

random lasers mode locking cannot be identified by an
overall temporal optical pulse (though each mode has a
time dynamics following the pumping pulse [45]). This
comes about because the frequencies of the lasing modes
are not equispaced and, therefore, their convolution does
not give rise to a pulse IðtÞ in time. This can be explicitly
seen in theoretical models where mode locking is imple-
mented together with unperturbative randomness [46,47].
We therefore demonstrate a different approach to detect it,
based on intensity cross-correlation measurements of a
GaAs random laser modes at different wavelengths.

Our random laser is composed by a thin deposition of
GaAs powder, whose properties are reported in the
Supplemental Material [32], which includes Ref. [48]. A
Gaussian laser beam (780 nm excitation wavelength) illumi-
nates the sample propagating perpendicular to the deposition
plane ðx; yÞ. The detection line is along the z direction in
transmission configuration (i.e., at the opposite side of the
sample with respect to the excitation line). The sample
thickness is irregular in the z direction, though always thinner
than 100 μm (details in the Supplemental Material [32]).
The emission intensity in random lasers is typically too

low to allow a good resolution in all dimensions (x, y, λ)
within a single shot. In our experiments we have emission
spectra from a given slice of the sample (10 μm wide)
resolved in the x coordinate (x, λ) for 100, 1000, and 10000
shots, corresponding to 10, 100, 1000 ms integration time.
These acquisition times allowed us to obtain a spectral
resolution high enough to adequately probe the presence of
nonlinear interaction. An instance of a space-wavelength
spectrum is displayed in the top panel of Fig. 1.
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FIG. 1. (Top panel) Instance of an intensity spectrum vs
position and wavelength of a GaAs crystal powder sample with
10 ms data acquisition time (100 shots). The red line represents
the section of the spectrum at position x ¼ 217 μm that is
displayed in the bottom panel. (Bottom panel) The red points
are the intensity spectrum vs wavelength λ at coordinate
x ¼ 217 μm, corresponding to the red cut in the top 2D plot.
The blue continuous curve is a multi-Gaussian interpolation with
a weighted combination of NG ¼ 7 Gaussian curves. In this
instance NG ¼ 7 turns out to be the number yielding the largest
likelihood with data avoiding overfitting (see Supplemental
Material [32]).
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In order to detect nonlinear mode coupling by a
statistical analysis we first have to identify and characterize
mode resonances. In all acquired spectra at all available
positions (x) resonances are identified by multiple fitting
with linear combinations of a variable number of Gaussian
distributions chosen according to the Akaike Information
Criterion (see Supplemental Material [32]). An instance of
this procedure is reported in Fig. 1, bottom panel, where we
plot raw data (in red dots) and compare them to a
multi-Gaussian interpolating function. Eventually, we build
a complete list of all resonances for each spectrum
produced in each one of the different data acquisitions
t ¼ 1;…; Nspectra ¼ 1000 in the series of measurements.

Each intensity peak IðtÞk of the spectrum t is identified by its
angular frequency ωk, its linewidth γk, its position xk,
and the FWHM Δxk in its position coordinate:

IðtÞk ≡ IðtÞðxk;Δxk;ωk; γkÞ.
Once we have the resonances we must study their

correlations. Since our aim is to detect nonlinear inter-
actions we have to go beyond the standard analysis of
intensity correlations in randommedia [49,50] and consider
the multipoint intensity correlations related to the χð3Þ
nonlinearity, i.e., the four-points correlations. We then
collect all quadruplets of intensity resonances Ij, Ik, Il,
Im occurring in the Nspectra spectra. A single quadruplet
ði; j; k; lÞ occurs in more spectra, if not in all, though in
each spectrum the intensities fluctuate, eventually provid-
ing a statistical ensemble of quadruplets. For each quad-
ruplet we compute the intensity four point connected
correlation function

c4ðωj;ωk;ωl;ωmÞ ¼
hIjIkIlImic
σjσkσlσm

ð4Þ

with σj ¼ hI2ji − hIji2 and where the average hð…Þi is
taken over the ensemble of the realizations of the given
quadruplet ði; j; k; lÞ in the many emissions acquired.
The function c4 is a cumulant: it has the property of

being small when the resonances are (nonlinearly) uncor-
related and large when they are very correlated (see
Supplemental Material [32]). Indeed, it is zero whenever
the intensity variables can be divided into two independent
sets, so that it is apt to detect the nonlinear properties of the
random laser (where the two-point intensity-intensity
correlations [50] would not suffice). We can, then, dis-
criminate between small and large looking at the distribu-
tion of values of these intensity correlations. However,
because of the many spurious effects contributing to
correlation among modes, in order to identify anomalously
large correlations due to mode coupling we first need a
reference for what small means, which we will term
background (BG) correlation. Therefore, we analyze the
distributions of the c4 in a sample dataset composed by all
sets of four distinct modes, each one of them pertaining to a

different spectrum. In this case no contribution to intensity
correlation can be induced by interaction of modes com-
peting for the energy pumped into the system.
We, consequently, compute the distribution of the c4

values of all sets of four different resonances occurring at
the same position x in the same spectrum, that we call the
self-overlapping intensity resonances (SOIR), and of all
sets of four intensity peaks of modes at different wave-
length and at different x in the same spectrum, i.e., the
nonoverlapping intensity resonances (NOIR).
In Fig. 2 we display the distributions of the SOIR

correlation functions c4 (top), of the NOIR c4 (mid) and
of the BG c4 (bottom). According to Eq. (3), sets of SOIR
might be induced by nonlinearly interacting modes because
their space overlap is certainly nonzero. Sets of NOIR
might still be related to interacting modes in an extended
mode scenario where EkðrÞ ≠ 0 for r in a large portion of
space [51].
The largest values appear always on the SOIR sets.

Comparing the distributions in Fig. 2 as the number of
acquired emissions increases, the dominion of possible
values for the SOIR correlations extends its extremes in the
tails of the distribution, while the distributions of NOIR and
background c4 appear insensitive to the change in acquis-
ition time. Moreover, no difference can be appreciated
between distributions of c4 of NOIR and BG resonances
(cf. Fig. 2). Thus, even if extended modes could be present
in the sample, the present analysis cannot discriminate
weak long-range mode coupling with respect to noise.
In Fig. 3 we superimpose instances of the normalized

distributions for the background, the NOIR and the SOIR
correlations for an acquisition time of 100 ms, clearly
showing that the tails of the SOIR distribution extend well
beyond the 3σ of the other two. With extremely high
confidence, we can, finally, operatively identify nonlinearly
interacting sets of modes as those whose multimode
correlation is larger than the 3σ of the background
correlation distribution and we can conclude that spatially
overlapping modes interact nonlinearly in the random
lasing regime.
Do the interacting modes (SOIR with large c4)

also satisfy FMC (2)? To test it we introduce a “FMC
parameter”

Δ4 ≡ jω1 − ω2 þ ω3 − ω4j
γ1 þ γ2 þ γ3 þ γ4

ð5Þ

representing the frequency matching (un)satisfaction. The
smaller Δ4, the better the matching among angular frequen-
cies of four modes. To relate interaction and mode locking
we, then, look for a direct link between smallΔ4 values and
very large intensity correlations, in the tails of the SOIR
distribution Pðc4Þ.
In order to understand the relationship between mode

locking and couplings we analyze the behavior of the mean
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square displacement σc4 of the distribution computed
exclusively on those quadruplets whose frequencies yield
Δ4 values in a given interval (of width 0.01). In Fig. 4 we
plot the σc4 of the distributions of correlations among
SOIR, NOIR, and BG sets versus Δ4. We observe no
dependence on Δ4 for BG and NOIR correlations. On the
contrary, the σc4 of SOIR correlations decreases with Δ4. In
the top panel of Fig. 2 and in Fig. 3 we saw that the SOIR
distributions have large tails, corresponding to interacting

sets. In view of such σc4ðΔ4Þ behavior we now understand
that large correlations (in distributions with large σ) are due
to contributions from the histogram sections at small Δ4. In
Figs. 4, 5 we see that increasing Δ4 the σc4 of the SOIR
correlation becomes of the order of the one of the back-
ground and this means that nontrivially strong correlations
only occur when frequencies are locked.
This behavior occurs at all acquisition times used in

experiments, cf. Fig. 5. In Fig. 5 we call ΔML
4 the value

below which surely interacting modes can be neatly
discriminated from background correlation. We observe
that ΔML

4 decreases, decreasing the acquisition time.
According to Eq. (2), in the limit of the single shot
experiment, interaction would be allowed only among
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those modes whose energies satisfy the FMC relationship.
In terms of data reported in Fig. 5 this would imply that a
relevant fraction of interacting mode sets should appear for
Δ4 ≲Oð1Þ. The outcome reported is strongly compatible
with such a requirement and is a strong evidence for mode
locking in random lasers.
Eventually, we also checked (see Supplemental Material

[32]) that the frequency matching influence is not an
artifact of the statistical sample size: the quantity of
identified resonances does not play a role in the frequency
matching dependence (parameter Δ4) of the c4 distribution.
Summing up, in our study on multi-intensity correlations

we first identified as certainly interacting quadruplets those
composed by modes whose intensity correlation lies in the
long tails of the distribution PSOIRðc4Þ, cf. top panel of
Fig. 2. We notice that large tails in (and exclusively in) the
PSOIRðc4Þ occur varying the pumping power, as well
(see Supplemental Material [32]). Then, we observed
(Figs. 4 and 5) that the FMC (2) appears to play a
determinant role in the distribution of the correlation of
intensities of interacting sets of modes (thick points in
Figs. 4, 5), and only on those, leading to the conclusion that
mode locking actually take places in random lasers.
This is the same mechanism behind the nonlinear mode

coupling in ordered multimode lasers, though without any
ad hoc device like a saturable absorber or a modulator: a
self-starting mechanism induced by randomness.
To unveil the self-starting mechanism beyond the just

demonstrated locking of modes in random lasers manda-
torily requires the identification of mode phases. We
believe that the presented results might be a significant
step to stimulate and lead the theoretical understanding and
the experimental procedures necessary to provide a proto-
col to determine mode phases in random lasers.
As a last remark we recall that in the ordered case mode

locking induces ultrafast pulses. In random lasers, instead,
no train of pulses is present, because the distribution of

frequencies is random, rather than comblike [33], and in the
subclass of glassy random lasers [52,53] even equispaced
frequencies would not be enough to provide pulses [47].
The presence of self-starting mode locking opens the

way to novel applications of random lasers. One example is
the possibility of pulsed random lasers. In this case the
disorder should be tuned to have a spectrum whose
resonances are reasonably equispaced.
Indeed, in standard pulsed laser [26] it is the combination

of comblike spectra [39] and nonlinear frequency matching
[54] that yields intensity pulses in the time domain [33,55].
This is a far nontrivial challenge but impressive develop-
ment in nanostructure and photonic crystal design (see,
e.g., Refs. [23–25]) might make such a construction
feasible in the near future.
Another example is in the field of reservoir computing

[56–58]. In this paradigm one exploits the intrinsic dynam-
ics of a “reservoir” to perform the desired computations.
The reservoir is only required to display sufficiently
complex dynamics that are then mapped by a readout
layer onto a low-dimensional space. In addition to the
nonlinear response of the emission in the random lasing
regime, the existence of nonlinear interactions among
modes makes random lasers a promising platform
for reservoir computing in order to outperform linear
classifiers [59].
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