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In this Letter, we present a new expression for the overlaps of wave functions in Hartree-Fock-
Bogoliubov based theories. Starting from the Pfaffian formula by Bertsch et al. [1], an exact and
computationally stable formula for overlaps is derived. We illustrate the convenience of this new
formulation with a numerical application in the context of the particle-number projection method. This new
formula allows for substantially increased precision and versatility in chemical, atomic, and nuclear physics
applications, particularly for methods dealing with superfluidity, symmetry restoration, and uses of
nonorthogonal many-body basis states.
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Introduction.—A very successful approach in the con-
text of many-body theory is to incorporate correlation
effects through symmetry breaking followed by restora-
tion of symmetries [2]. The intuitive picture gained from
the symmetry-broken solutions has provided much insight
into the symmetry and beauty of nature. For instance,
many nuclei can be described as intrinsically deformed
where both axial and reflection symmetry are broken [3].
Moreover, combining shape degrees of freedom with
angular momentum orientation, additional symmetries
arise that can also be broken with spectacular manifes-
tations in nuclear spectra [4]. For each broken symmetry
new collective modes emerge, which complete a picture of
nuclear structure and nuclear spectra with an increasing
precision. As starting points, mean-field theories play a
large role because of their ability to find approximate
solutions to the many-body Schrödinger equation at a
relatively low computational cost [5]. A typical example is
the Hartree-Fock-Bogoliubov (HFB) method where the
wave function solution is written as a product of inde-
pendent quasiparticles. Nuclear physics applications of
HFB coupled with symmetry-restoration methods have
allowed us to accurately describe a vast swath of nuclear
properties such as binding energies, mean-square radii,
deformation, and spectra. Under certain circumstances,
such as for instance in the case of shape coexistence, it
becomes necessary to include additional correlations
between the quasiparticles. Correlations beyond the mean
field can be included, for example, using the framework of
the generating coordinate method (GCM) [5–11] where

the wave function is written as a linear combination of
different nonorthogonal mean-field configurations. In
practice, the solution of GCM equations and the appli-
cation of symmetry-restoration methods require the pre-
cise computation of overlap functions. The modulus of the
overlap between two HFB vacua can be computed with
the Onishi formula [12] thus leaving ambiguity on its sign.
Several studies have subsequently been dedicated to
compute the overlap using various methods [13–23]. In
[24], Robledo derived an expression for the overlap in
terms of a Pfaffian (pf). In a later publication [1], Bertsch
and Robledo extended the Pfaffian formulation to over-
laps between odd-A systems and overlaps for operators
involved in symmetry-restoration methods. Let us con-
sider two HFB vacua jΦi and jΦ0i with even number
parity (for an even-A nucleus) and the associated overlap
O≡ hΦjΦ0i. The formula by Bertsch and Robledo [1]
gives O as

O ¼ ð−1ÞN=2 ðdetCÞ� detC0Q
i;i0vivi0

0 pf

�
VTU VTV 0�

−V 0†V U0†V 0�

�
; ð1Þ

where N is the (even) number of single-particle basis
states and U, V (U0, V 0) are matrices of the Bogoliubov
transformation associated with jΦi (jΦ0i) [5]. Using the
Bloch-Messiah decomposition [25], one can write U ¼
DŪC and V ¼ D�V̄C where D and C are both unitary
matrices and D defines the so-called canonical basis
associated with jΦi. Ū and V̄ can be chosen as diagonal
and skew-symmetric, respectively. The matrix V̄ is written
in terms of N=2 blocks of dimension 2 × 2 with elements
(vi;−vi) where v2i is the occupation probability of the
canonical basis state i (the matrix elements ui of Ū are
such that u2i þ v2i ¼ 1). We adopt the usual phase con-
vention ui > 0 and vi > 0 [5]. For vi ¼ 1, the level i is
fully occupied whereas it is empty for vi ¼ 0. v0i and C0 in
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(1) are obtained by the Bloch Messiah decomposition of
(U0; V0). In practice, due to the tiny values of vi; v0i for the
least occupied levels, the computation of the overlap (1)
can become unstable. Indeed, in this context, both the
denominator

Q
i;i0 vivi0

0 and the Pfaffian in the numerator
of Eq. (1) have small values that can become out of the
scope of the double-precision data type. A potential
solution to this issue could be to discard levels for which
vi, v0i ∼ 0 in the computation of the overlap. But in
practice, it can become difficult to check the reliability
of such an approach. Indeed, one would need to check that
the omitted levels have a negligible contribution in the
value of the overlap and this would be done by increasing
the number of levels considered. Eventually one might
again run into instability of the numerical computation. It
is especially important to obtain precise values of overlaps
in the context of GCM where the basis states are not
orthogonal and requires the solution of a generalized
eigenvalue problem in the overcomplete basis. Other
solutions to this issue have been proposed in [26] where
small values of vi are replaced by an ad hoc tiny numerical
parameter ϵ. However, it would be advantageous and more
convenient for systematic calculations to be able to bypass
the introduction of such a parameter. It should be
mentioned that similar issues with multiplications of large
and small terms were also discussed in [13] where, using a
different formulation of the overlap, difficulties arise
instead for ui, u0i0 ∼ 0. This formulation was further
generalized in [22,27] where tailored algorithmic
procedures were introduced to allow for inclusion of
states having exactly ui, u0i0 ¼ 0. Nevertheless, in practice
the presence of states with very small but nonzero
values of ui, u0i0 ¼ 0 still requires the introduction of a
cutoff.
In this Letter, we present a new and practical formulation

of the overlap [see Eq. (10) in the case of an even-A system
and Eq. (12) for an odd-A system] which allows for a
precise and stable computation and is also amenable to
controllable truncations. This Letter is organized as fol-
lows. We first show the main steps involved in the
derivation of the formula for the overlap between two
HFB vacua for an even-A system and then show the
expression for the overlap in the case of an odd-A system.
We then illustrate the numerical stability offered by this
formulation by computing, as a function of the number of
canonical basis states included, the matrix element of the
particle-number projection operator.
We start the derivations from Eq. (1). First, we want to

point out that this equation cannot be used directly when
including empty levels since in that case, the expression

involves products of zero and infinity. The equation is,
however, generally valid if one assumes a tiny occupation ϵ
for the empty levels. In our final expression Eqs. (10) and
(12), these factors cancel out analytically and one may
safely evaluate the expression in the limit ϵ → 0.
We denote M the matrix argument of the Pfaffian in

Eq. (1). Using the Bloch-Messiah decomposition for U, V
and U0, V 0 we obtain

M¼
�

−CTV̄ ŪC −CTV̄D†D0V̄ 0C0�

C0†V̄ 0D0TD�V̄C C0†Ū0 V̄ 0C0�

�

¼
�
CT 0

0 C0†

��
−V̄ Ū −V̄D†D0V̄ 0

V̄ 0D0TD�V̄ Ū0 V̄ 0

��
C 0

0 C0�

�
:

ð2Þ

From Eq. (2) and the relation

pfðABATÞ ¼ detðAÞpfðBÞ; ð3Þ

we can write

pfðMÞ ¼ detC detC0†pf
�

−V̄ Ū −V̄D†D0V̄ 0

V̄0D0TD�V̄ Ū0 V̄ 0

�
: ð4Þ

In order to avoid the numerical instability that arises in the
computation of the overlap directly from Eq. (1) we
factorize the norms of the HFB vacua out of pfðMÞ.
This is achieved in the following steps by first writing the
matrix argument of the Pfaffian on the right-hand side of
Eq. (4) as

�
V̄ 0

0 V̄ 0

��
ŪV̄−1 D†D0

−D0TD� −V̄ 0−1Ū0

��
−V̄ 0

0 −V̄ 0

�
: ð5Þ

Introducing the diagonal matrix

Λ ¼

0
BBBBBBBB@

ffiffiffiffiffi
v0

p
ffiffiffiffiffi
v0

p
ffiffiffiffiffi
v1

p

. .
.

ffiffiffiffiffiffiffiffiffiffiffiffiffivN=2−1
p

1
CCCCCCCCA

ð6Þ

and a similar matrix Λ0 with the occupation number v0i, we
can rewrite (5) as

�
V̄Λ−1 0

0 V̄ 0Λ0−1

��
ΛŪV̄−1Λ ΛD†D0Λ0

−Λ0D0TD�Λ −Λ0V̄ 0−1Ū0Λ0

��
−Λ−1V̄ 0

0 −Λ0−1V̄ 0

�
: ð7Þ
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From the expression above, we can now write Eq. (4) as

pfðMÞ ¼ detC detC0†pf
��

V̄Λ−1 0

0 V̄ 0Λ0−1

��
ΛŪV̄−1Λ ΛD†D0Λ0

−Λ0D0TD�Λ −Λ0V̄ 0−1Ū0Λ0

��
−Λ−1V̄ 0

0 −Λ0−1V̄ 0

��
ð8Þ

¼ detC detC0† detðV̄Λ−1Þ detðV̄ 0Λ0−1Þpf
�

ΛŪV̄−1Λ ΛD†D0Λ0

−Λ0D0TD�Λ −Λ0V̄ 0−1Ū0Λ0

�
; ð9Þ

where Eq. (9) has been obtained from Eq. (8) using once
again the relation (3), The matrix V̄Λ−1 is tridiagonal and
skew symmetric with matrix elements

ffiffiffiffi
vi

p
and − ffiffiffiffi

vi
p

. As a
consequence, one has detðV̄Λ−1Þ ¼ Q

i vi and similarly
detðV̄ 0Λ0−1Þ ¼ Q

i v
0
i. As it becomes clear now, the ad hoc

introduction ofΛ andΛ0 has allowed us to factorize the norm
of the HFB vacua out of the Pfaffian in Eq. (4). Using Eq. (9)
in Eq. (1), we now arrive at an expression of the overlap as

ð−1ÞN=2pf

�
ΛŪV̄−1Λ ΛD†D0Λ0

−Λ0D0TD�Λ −Λ0V̄ 0−1Ū0Λ0

�

¼ ð−1ÞN=2pf

�
−Ūσ ΛD†D0Λ0

−Λ0D0TD�Λ σŪ0

�
; ð10Þ

where σ is the N × N tridiagonal skew-symmetric matrix
with elements 1 and −1 [28]. The expression (10) is exact
and allows for a stable numerical computation of overlaps
independently of how tiny the occupation number vi might
be (this includes the limit of vanishing occupations, e.g., in
the case of no pairing, where occupation numbers are exactly
0 for levels with energy greater than the Fermi energy).
Moreover, the formula enables us to systematically reduce
the computing cost by including only levels for which the
occupation number vi (v0i) is greater than a given value η and
accordingly truncating the matrix in Eq. (10). The quality of
the truncation can then be checked a posteriori by decreas-
ing η to arbitrary small values. Let us assume that for a given
value of η, n (n0) canonical basis states fulfill the criteria
vi ≥ η (v0i ≥ η). In that case, the values of the overlap in this
truncated space is given by [28]:

ð−1Þn=2pf
� ½−Ūσ�n×n ½ΛD†D0Λ0�n×n0
−½Λ0D0TD�Λ�n0×n ½σŪ0�n0×n0

�
: ð11Þ

The extension for odd-A systems is straightforward and
the derivation goes along the same line (see [28]). Let us
consider the overlap between two odd-A states written as
one quasiparticle creation operators acting on even-num-
ber-parity HFB vacua that is, β†ajΦi and β†a0 jΦ0i. The
corresponding overlap hΦjβaβ†a0 jΦ0i is given as

O ¼ ð−1ÞN=2pf

�
A B

−BT C

�
ð12Þ

with matrix

A ¼
�

−Ūσ ΛD†D0Λ0

−Λ0D0TD�Λ σŪ0

�
; ð13Þ

related to the even part of the system,

B ¼
�
ΛD† 0

0 −Λ0D0T

��
VðaÞ� U0ða0Þ

UðaÞ� V0ða0Þ

�
ð14Þ

related to the connection between the even and the odd part
and

C ¼
�

0 UðaÞ†U0ða0Þ

−UðaÞ†U0ða0Þ 0

�
ð15Þ

related to the odd particles. The index a (a0) in the
equations above is used to denote the column vectors
associated with the two blocked quasiparticles. As in the
case of the overlap between even-number-parity vacua, the
expression for the overlap in the odd case is numerically
stable and allows for controllable truncations. In this
context, the truncated expression for the overlap can be
written as [31] (see [28]):

O ¼ ð−1Þn=2pf

0
BBBBB@

−½Ūσ�n×n ½ΛD†D0Λ0�n×n0 ½ΛD†VðaÞ��n×1 ½ΛD†U0ða0Þ�n×1
½σŪ0�n0×n0 −½Λ0D0TUðaÞ��n0×1 −½Λ0D0TV0ða0Þ�n0×1

0 ½UðaÞ†U0ða0Þ�1×1
0

1
CCCCCA
: ð16Þ
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Example.—As a proof of principle, we now show results
for the computation of a matrix element involved in the
particle-number projection method for an even-A nucleus.
We denote this matrix element OPN:

OPN ≡ hΦje−iN̂ϕjΦi ¼ hΦjΦ0i; ð17Þ

where e−iN̂ϕ is the gauge rotational operator for the particle-
number projection, N̂ the particle-number operator, and ϕ
the gauge angle. We focus on projecting the number of
neutrons and generate the occupation numbers with a HFB
calculation of 192Pb using a basis of 17 major oscillator
shells, the SLY4 functional [32], and a separable Gaussian
pairing interaction [33]. We rewrite OPN as the overlap
between the vacuum jΦi and a rotated vacuum jΦ0i with
the corresponding Bogoliubov-transformation matrices
U0 ¼ Ueiϕ and V 0 ¼ Ve−iϕ. We set ϕ ¼ π=10 and for
convenience, we randomly generate the unitary matrices D
and C. We calculate OPN with Eq. (11) for different values
of the number n of canonical basis states including in the
computation [we label OPNðnÞ the values obtained when n
states are included]. The exact value is obtained for
n ¼ N ¼ 1938, i.e., when all single particle states have
been included. Results of the calculation are shown in
Fig. (1). Panel (a) shows the modulus of the matrix
elements as a function of n and as one can see, the value
of the matrix elements smoothly converges to the exact
value as n is increased. Panel (b) shows the modulus of the
real and imaginary part of the relative error defined as
δðnÞ ¼ ½OPNðnÞ −OPNðNÞ�=jOPNðNÞj. In order to have a
relative error less than one percent around 800 states are
needed. Panel (c) shows the decimal logarithm ofQ

n
i;i0 viv

0
i0 , i.e., the denominator of the prefactor of

Eq. (1) as a function of n. The horizontal dashed line
and arrow indicate the value 10−322, below which the
computation of the overlap with Eq. (1) is numerically
unstable when computed with the double-precision data
type. In such a case, the computation limit is reached at
n ¼ 323 for which vi ¼ 0.097593. Increasing the numeri-
cal precision would allow us to extend the range of validity
of using Eq. (1) to compute the overlap albeit at the price of
a higher computational burden. Since in the general case
the product

Q
n
i;i0 viv

0
i0 may become arbitrary small, any

calculation of Eq. (1) with increased precision will even-
tually fail.
With the new formula all states can be included without

encountering any numerical instability. The ability to
include all states is expected to be particularly important
for the description of the radial tail of the wave function. A
correct description of the wave function at large distances is
in turn critical for many applications involving scattering
and reaction processes [34] such as alpha decay [35] or the
computation of nucleon-nucleus optical potential [36–38].
Conclusion.—In this Letter we have presented a new,

exact, and numerically stable formulation of overlap

functions that appear in beyond mean-field theories such
as the GCM method. We have illustrated the benefits
offered by this formulation by computing a matrix element
for the particle-number projection method. We want to
emphasize that the derivations presented here are applicable
to overlap functions in the context of both even and odd
number parity.
The expression for the overlap can be combined with

approaches to obtain the matrix elements of the
Hamiltonian for example by expressing these matrix
elements in a factorized form as sums of products of
transition densities multiplied by overlap functions [5,39].
Such transition densities are efficiently calculated in the
canonical basis where dimensions can be reduced by
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FIG. 1. Matrix element OPNðnÞ as a function of the number of
canonical basis states included in the computation n. Panel
(a) shows the modulus of the matrix elements at ϕ ¼ π=10 as
a function of n. The dotted line corresponds to the value in the full
model space when n ¼ N. Panel (b) shows the absolute value of
the relative error δðnÞ for both the real part (full line) and
imaginary part (dashed line) of the matrix element (see text). The
two horizontal dotted lines indicate the error at 1% and 0.1%.
Panel (c) shows the decimal logarithm of the denominator of the
prefactor in Eq. (1). The horizontal dotted line indicates the value
10−322, which corresponds approximately to the smallest number
that can be represented using the double-precision data type. The
shaded area represents the range of validity of using Eq. (1) to
compute the overlap at the double-precision level.
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removing unoccupied states [40–44]. The expressions
derived in this Letter may also be extended to cover cases
when the left and right vacua are expressed in different
bases (see, e.g., [22,27]).
The new formula offers substantial improvements over

current methods since exact values can now be obtained
even in large spaces without being limited by the ability of
representing very small or large numbers. It adds no extra
computational effort or complexity and may be truncated in
a systematic way, which allows for a smooth convergence
toward the exact value. Finally, the new formula opens the
door toward precision calculations of nuclear reactions and
nuclear structure where one takes advantage of the power of
symmetry breaking.

We acknowledge beneficial discussions with Andrea
Idini. The authors thank the Knut and Alice Wallenberg
Foundation (KAW 2015.0021) and the Crafoord
Foundation for financial support.
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