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The amplitude for the neutrinoless double β (0νββ) decay of the two-neutron system nn → ppe−e−

constitutes a key building block for nuclear-structure calculations of heavy nuclei employed in large-scale
0νββ searches. Assuming that the 0νββ process is mediated by a light-Majorana-neutrino exchange, a
systematic analysis in chiral effective field theory shows that already at leading order a contact operator is
required to ensure renormalizability. In this Letter, we develop a method to estimate the numerical value of
its coefficient (in analogy to the Cottingham formula for electromagnetic contributions to hadron masses)
and validate the result by reproducing the charge-independence-breaking contribution to the nucleon-
nucleon scattering lengths. Our central result, while derived in dimensional regularization, is given in terms
of the renormalized amplitudeAνðjpj; jp0jÞ, matching to which will allow one to determine the contact-term
contribution in regularization schemes employed in nuclear-structure calculations. Our results thus greatly
reduce a crucial uncertainty in the interpretation of searches for 0νββ decay.
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Introduction.—Neutrinoless double β decay is by far
the most sensitive laboratory probe of lepton number viola-
tion (LNV). Its observation would prove that neutrinos are
Majorana fermions, constrain neutrino mass parameters, and
provide experimental validation for leptogenesis scenarios
[1–4]. If 0νββ decay is caused by the exchange of light-
Majorana neutrinos, as we consider here, the ampli-
tude is proportional to the “effective” neutrino mass
mββ ¼

P
i U

2
eimi, where the sum runs over light-neutrino

masses mi and Uei are elements of the neutrino-mixing
matrix. 0νββ is a complicated process involving particle,
nuclear, and atomic physics, and the interpretation of exper-
imental limits [5–10], and even more so of potential future
discoveries, is hampered by substantial uncertainties in the
calculation of hadronic and nuclear matrix elements [11–19].
Chiral effective field theory (EFT) [20–25] plays a key

role in addressing these uncertainties. Nuclear-structure
ab initio calculations based on chiral-EFT interactions
[26–28] have recently become available for some pheno-
menologically relevant nuclei [29–31] and the issue of gA
quenching in single β decays has been resolved as a
combination of two-nucleon weak currents and strong
correlations in the nucleus [32–34]. In addition, the few-
nucleon amplitudes used as input in nuclear-structure

calculations have been scrutinized in chiral EFT for various
sources of LNV [35–44]. In the context of light-Majorana-
neutrino exchange, using naive dimensional counting, the
leading contribution in the chiral-EFT expansion arises
from a neutrino-exchange diagram, in which the LNV
arises from insertion of the ΔL ¼ 2 effective neutrino mass
mββ [see Fig. 2(a)]. In analogy to the nucleon-nucleon
(NN) potential itself [23–25] and external currents [45],
this conclusion no longer holds when demanding manifest
renormalizability of the amplitude, which requires the
promotion of an nn → ppe−e− contact operator to leading
order (LO) [40,43] [see Fig. 2(d)], encoding the exchange
of neutrinos with energy or momentum greater than the
nuclear scale. The size of this contact operator is currently
unknown, leading to an additional source of uncertainty in
the interpretation of 0νββ decays besides the nuclear-
structure ones. In this Letter, we present a first estimate
of the complete nn → ppe−e− amplitude including this
contact-term contribution. For related progress toward a
calculation of this amplitude based on lattice gauge theory,
we refer to the recent literature [46–52] (see Ref. [53] for a
large-Nc analysis).
The hadronic part of the light-Majorana-neutrino-

exchange amplitude has the structure
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Aν ∝
Z

d4k
ð2πÞ4

gμν
k2 þ iϵ

Z
d4xeik·xhppjTfjμwðxÞjνwð0Þgjnni

ð1Þ

and is ultimately determined by the two-nucleon matrix
element of the time-ordered product TfjμwðxÞjνwð0Þg of two
weak currents. Similar matrix elements arise in electro-
magnetic contributions to hadron masses or scattering
processes, replacing the weak current by the electromag-
netic current jμemðxÞ. In the case of hadron masses, the
Cottingham formula [54,55] relates the electromagnetic
splitting to the contraction of the forward Compton
scattering amplitude with a massless propagator, see
Fig. 1 and Eq. (1). In this case, at least the elastic
contribution to the mass (for which the hadronic inter-
mediate state is the same as the external ones) follows
unambiguously from the contraction of the scattering
amplitude. Since this is precisely the same structure
as required for the light-Majorana-neutrino-exchange
contribution to the 0νββ decay nn → ppe−e−, the novel
idea of this Letter is to constrain the corresponding
amplitude by generalizing the Cottingham approach to
the two-nucleon system and then determine the contact-
term contribution by matching to chiral EFT.
In the application of the Cottingham approach to the pion

and nucleon mass difference, the by far dominant contri-
bution arises from elastic intermediate states: the pion-pole
contribution gives more than 80% of the pion mass
difference [56–60], and the nucleon pole provides the bulk
of the electromagnetic part of the proton-neutron mass
difference mel

p−n ¼ 0.75ð2Þ MeV. In this case, there is a
tension between the estimate of the inelastic contributions
in lattice QCD, minel

p−n ¼ 0.28ð11Þ MeV [61–63], and from
nucleon-structure functions, minel

p−n ¼ −0.17ð16Þ MeV
[64–67], but in either case the elastic estimate is accurate
at the 30% level.
The main complication in the generalization to 0νββ

decay is due to the two-particle nature of initial and final
states and the ensuing proliferation of kinematic variables
and scalar functions in a Lorentz decomposition of the
amplitude. Accordingly, we do not attempt a strict deriva-
tion of the elastic contribution via a dispersion relation, but

include the most important intermediate states in close
analogy to the results for the pion and nucleon Cottingham
formula, as described in more detail below. To assess the
validity and accuracy of the approach, we also consider the
two-nucleon matrix element with two electromagnetic
currents, which controls charge-independence breaking
(CIB) in theNN scattering lengths. In this case, comparison
with data allows us to confirm the expectation of an
accuracy around 30% if only elastic contributions are kept,
as suggested by the proton-neutron mass difference. A
determination at this level already has a major impact in
bounding the size of the contact-term contribution to
0νββ decay.
Matching procedure.—The integration over the neutrino

momentum k in Eq. (1) can be split into several regions.
Given the nonrelativistic nature of the process, we
always perform the k0 integral via the residue theorem
and analyze the relevant momentum regions in terms of the
spacelike modulus jkj. We introduce a low-energy region
jkj < Λχ , a hard region jkj > Λ, and an intermediate
region Λχ < jkj < Λ, where Λ denotes the scale at which
an operator product expansion (OPE) becomes applicable
and Λχ is the breakdown scale of chiral EFT. The basic idea
in generalizing the Cottingham approach to the NN system
then amounts to interpolating between the low-energy EFT
and the high-energy OPE constraints, by using information
on the momentum dependence of the pion and nucleon
form factors as well as the NN scattering amplitude. This
strategy captures the analog of the dominant elastic con-
tributions to the Cottingham formula for the pion and
nucleon mass differences, but does introduce some model
dependence in the intermediate region. To estimate the
uncertainty, it is thus critical to be able to validate the
approach with data, as we will demonstrate below in terms
of CIB in the NN scattering lengths. In practice, we express
our result for the full amplitude as

Afull
ν ¼

Z
∞

0

djkjafullðjkjÞ¼A<þA>;

A<¼
Z

Λ

0

djkja<ðjkjÞ; A>¼
Z

∞

Λ
djkja>ðjkjÞ; ð2Þ

where A< subsumes the low- and intermediate-momentum
regions, A> denotes the short-distance contribution, and
the two are separated by the scale Λ where the OPE
behavior is expected to set in. In the final step, we match the
EFT description to the full amplitude

AEFT
ν ¼ A< þA>; ð3Þ

which determines the contact-term contribution in the MS
scheme employed in the EFT calculation.
Pion mass difference.—To illustrate this matching pro-

cedure, we first reformulate the Cottingham formula for the
pion mass difference in terms of our matching variable jkj

FIG. 1. Forward scattering amplitude (left) and self-energy
contraction (right). The solid line refers to the hadronic states
(pion, nucleon, two-nucleon), the gray blob to the nonperturba-
tive amplitude, and the wiggly lines to the massless mediator
attached to the currents (photon or neutrino).
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instead of the Wick-rotated four-momentum kE typically
considered in the literature [56–60]. In this case, the
matching proceeds in terms of the low-energy constant
Z, which determines, at LO, the pion mass difference

Z ¼ M2
π� −M2

π0

2e2F2
π

¼ 0.81: ð4Þ

The elastic contribution to the Cottingham formula gives

Zel ¼ 3i
2F2

π

Z
d4k
ð2πÞ4

½FV
π ðk2Þ�2
k2 þ iϵ

¼ 3

32π2F2
π

Z
∞

0

dk2E½FV
π ð−k2EÞ�2 ¼

3M2
V

32π2F2
π
; ð5Þ

where, for the pion vector form factor, the simple approxi-
mation FV

π ðk2Þ ¼ M2
V=ðM2

V − k2Þ withMV ¼ Mρ has been
inserted. In our matching procedure, the low-energy con-
tribution is instead identified by introducing a cutoff in jkj,
which leads to

Z< ¼ 3

16π2F2
π

Z
Λ

0

djkjjkj ðωV − jkjÞ2ð2ωV þ jkjÞ
ω3
V

; ð6Þ

with ωV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

V þ jkj2
p

. For Λ → ∞, this expression
agrees with Eq. (5). For our application, the ρ-pole
approximation for FV

π is sufficient, but could be extended
by introducing a dispersive representation [68], whose
Cauchy kernel would be treated in analogy to the vec-
tor-meson propagator above, via the residues in the k0

integration. Second, we find

Z> ¼ 3αsðμÞgππLRðμÞ
16π

Z
∞

Λ
djkj 1

jkj3 ; ð7Þ

with coefficient gππLR ¼ ð4πFπÞ2ḡππLR, ḡππLR ¼ 8.2 at MS scale
μ ¼ 2 GeV [69] (see Refs. [70,71] for the OPE contribu-
tion in the nucleon case). At scale Λ ¼ 2 GeV, we find for
the sum Z ¼ Z< þ Z> ¼ 0.60þ 0.03 ¼ 0.63, which for
Λ → ∞ approaches Z ¼ 0.67. The deficit to Eq. (4) is
understood in terms of inelastic contributions from axial-
vector intermediate states [56–60], which provides another
estimate of the error incurred by only considering elastic
contributions.
Contact term in 0νββ decay.—The nn → ppe−e− ampli-

tude in chiral EFT takes the form

AEFT
ν ¼ AA þAB þAC þAD; ð8Þ

where the four terms correspond to the topologies in Fig. 2,
and renormalization of the divergence in AC requires the
LO contact term AD. For the matching, only these latter
two topologies become relevant. In particular, only the
ultraviolet singular part of the C topology—i.e., the one

involving noninteracting two-nucleon propagators—enters
the matching condition, which can be expressed in terms of
dimensionless amplitudes as

Ā<;sing
C þ Ā>

C ¼ Āsing
C ðμχÞ þ 2C̃1ðμχÞ: ð9Þ

The left-hand side refers to the full amplitude, separated
into momentum regions in analogy to Z≶ above, while the
right-hand side gives the amplitude in chiral EFT, including
the contact term C̃1 at MS scale μχ (we use here the notation
of Ref. [43]). The explicit expressions are

Ā<;sing
C ¼

Z
Λ

0

djkja<ðjkjÞ; Ā>
C ¼

Z
∞

Λ
djkja>ðjkjÞ;

Āsing
C ðμχÞ ¼ −

1þ 2g2A
2

þ
Z

μχ

0

djkjaχðjkjÞ; ð10Þ

with integrands

a<ðjkjÞ ¼ −
rðjkjÞ
jkj θðjkj − 2jpjÞ

×

�
½gVðk2Þ�2 þ 2½gAðk2Þ�2 þ k2½gMðk2Þ�2

2m2
N

�
;

a>ðjkjÞ ¼
3αsðμÞ

π
ḡNN
1 ðμÞ F2

π

jkj3 ;

aχðjkjÞ ¼ −ð1þ 2g2AÞ
1

jkj θðjkj − 2jpjÞ; ð11Þ

where gV;A;Mðk2Þ refers to the appropriate nucleon
form factors in analogy to FV

π ðk2Þ above, ḡNN
1 ðμÞ is the

(a) (b)

(c) (d)

FIG. 2. LO topologies (a)–(d) for 0νββ: the thick solid lines
denote nucleons and the oriented ones leptons (internal neutrino
and external electrons). The squares denote LNV vertices. The
diagrams for the electromagnetic current are obtained by replac-
ing the internal neutrinos by photons, omitting the external
electrons, and adding an additional topology with the internal
neutrinos replaced by pions. In the full theory, the EFT vertices,
here denoted by gray circles and diamonds, are supplemented by
the appropriate form factors and scattering amplitudes that
capture the momentum dependence of the elastic NN intermedi-
ate-state contributions. Iterations of the NN strong Yukawa and
short-range interactions (diamonds) are not shown as they are
irrelevant for the matching analysis.
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two-nucleon matrix element of the local operator control-
ling the short-distance behavior of TfjμwðxÞjνwð0Þg, and p
denotes the momentum of the incoming nn pair. In
addition, compared to the pion mass example, there is a
new source of momentum dependence originating from the
NN scattering amplitude itself, parametrized here in terms
of rðjkjÞ. At LO in chiral EFT rLOðjkjÞ ¼ 1, with correc-
tions that, in pionless EFT, can be identified with the
effective range r0, rNLO=π ðjkjÞ ¼ 1 − r0jkj=π. In practice, we
have evaluated rðjkjÞ using next-to-leading-order (NLO)
chiral EFT as well as the NN potentials from Refs. [72–74]
(see Ref. [75] for more details). For the nucleon form
factors, simple dipole parametrizations are sufficient, with
the main uncertainty arising from the axial-vector scale,
which we take as ΛA ¼ 1.0ð2Þ GeV to match the uncer-
tainty for the axial radius quoted in Ref. [76]. The matrix
element ḡNN

1 ðμÞ, expected to be Oð1Þ, is presently
unknown, but in view of the large corresponding pion
matrix element ḡππLR ¼ 8.2, we take ḡNN

1 ∈ ½−10; 10�. The
impact on the numerical analysis remains minor, reflecting
the stability of the result upon variation of Λ, as long as
Λ > 1 GeV. The functions aχ;<;>ðjkjÞ determining the NN
(elastic) contribution to the amplitude are shown in Fig. 3.
Finally, the main uncertainty is expected to arise from
inelastic contributions. To estimate their impact, we have
considered the simplest diagram with an NNπ cut, which
affects the contact term at the level of 0.1–0.35, motivating
an inelastic uncertainty of 0.5. Taking everything together,
we quote

C̃1ðμχ ¼ MπÞ ¼ 1.32ð50Þinelð20Þrð5Þpar ¼ 1.3ð6Þ ð12Þ

as our main result for the contact term at MS scale μχ ¼ Mπ .
The uncertainties refer to the inelastic contributions rðjkjÞ
and parametric uncertainties (nucleon form factors and ḡNN

1 ),
respectively. The final uncertainty is dominated by inelastic
effects and implies a relative precision of 20%–30% on the
renormalized singular amplitude Āsing

C þ 2C̃1 in Eq. (9) at
jpj ∼ ð20–30Þ MeV—in line with the expectation from the
Cottingham analyses of pion and nucleon masses discussed
above. Note that this translates into a smaller relative error on
the total amplitude AEFT

ν .
Charge-independence breaking.—The LNV contact

term C̃1 corresponds to the insertion of two left-handed
weak currents in Eq. (1). The insertion of two (vector)
electromagnetic currents generates in chiral EFT a new
contact term—denoted by C̃1 þ C̃2—that contributes to
CIB in NN scattering processes [40,43]. The calculation
of C̃1 þ C̃2 proceeds along similar lines to the one of C̃1, but
is further complicated by the pion-exchange contribution,
in which the external photon currents couple to the virtual
pion. We treat this intermediate-state Compton scattering
amplitude in analogy to the discussion of the pion
Cottingham formula above, which, for on-shell pions,
amounts to isolating the pion pole in a dispersion relation
[77–79] and thus corresponds to our strategy of evaluating
the elastic contributions. The resulting matching relation
becomes analogous to Eqs. (9)–(11), but includes, in
addition to the appropriately amended NN pieces, a ππ
contribution from the pion-exchange diagram. The match-
ing is illustrated in Fig. 3 and we refer to Ref. [75] for the
explicit expressions. Numerically, we obtain

ðC̃1þ C̃2Þðμχ ¼MπÞ¼ 2.9ð1.1Þinelð0.3Þrð0.3Þpar ¼ 2.9ð1.2Þ:
ð13Þ

The assigned inelastic error corresponds to a relative error
of about 50% in the singular NN electromagnetic amplitude
at jpj ∼ 25 MeV, larger than the 30% in theweak amplitude.
In addition to the new class of pion-exchange diagrams, this
is motivated by the observation that now the parametric error
becomes more sizable, almost exclusively due to the NN
short-distance coupling ḡNN

LR varied within ½−10; 10� and
the scale Λ between 2 and 4 GeV. Indeed, if Λ were
decreased to values as low as 1 GeVand thus into the energy
region where the applicability of the OPE becomes ques-
tionable and inelastic effects important, a variation around
1.0 would be obtained. Numerically, the ππ contribu-
tion dominates, yielding ðC̃1 þ C̃2Þðμχ ¼ MπÞjππ ¼ 2.4,
while the effect from the most uncertain region,
ðC̃1 þ C̃2Þðμχ ¼ MπÞjjkj∈½0.4;1.5� GeV ¼ 0.55, falls safely
within our uncertainty estimate.
The result (13) already compares quite well to the

phenomenological determination ðC̃1 þ C̃2Þðμχ ¼ MπÞ ¼
5.0 from Ref. [43]. However, since the contact term is
scale and scheme dependent, it is more appropriate to

FIG. 3. Integrand functions defined in Eq. (11), appearing in the
matching relations (9) and (10) for the LNV coupling C̃1: aχðjkjÞ
(solid red line extending to jkj ¼ 4Mπ), a<ðjkjÞ (solid blue line),
and a>ðjkjÞ (dark green thin band obtained by taking the range
ḡNN
1 ∈ ½−10; 10�). The dashed red and blue lines and light green
band correspond to the integrands aχ;<;>ðjkjÞ entering the
matching relation for the CIB coupling C̃1 þ C̃2. The light green
band corresponds to the range ḡNN

LR ∈ ½−10; 10�.
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compare directly observables calculated based on Eq. (13).
To this end, we first note that within LO chiral EFT the
scattering lengths ann, anp, and aCpp (the latter defined in the
modified effective range expansion to account for Coulomb
effects [80–82]) can be mapped onto contact terms for each
channel

C̃np ¼ C̃þ e2

3
ðC̃1 þ C̃2Þ;

C̃nn=pp ¼ C̃ −
e2

6
ðC̃1 þ C̃2Þ �

1

2
C̃CSB; ð14Þ

where C̃ denotes the isospin-symmetric combination,
C̃1 þ C̃2 is the CIB contribution, and C̃CSB is a charge-
symmetry-breaking term [83]. To test our prediction for
C̃1 þ C̃2, we can thus use two observables to determine C̃
and C̃CSB, and then predict the third based on Eq. (13). We
choose

aCIB ¼ ann þ aCpp
2

− anp ¼ 10.4ð2Þ fm; ð15Þ

which would isolate the CIB contribution if NN scat-
tering were perturbative and Coulomb interactions
absent, and we have used the empirical values aCpp ¼
−7.817ð4Þ fm [84,85], anp ¼ −23.74ð2Þ fm [86,87],
and ann ¼ −18.9ð4Þ fm [88]. From Eq. (13) we find
aCIB ¼ 15.5þ4.5

−4.0 fm, in good agreement with Eq. (15),
given that additional uncertainties from higher chiral orders
could be attached. We thus conclude that the comparison to
CIB validates our approach at the level of 30%–50%, and
that our uncertainty estimates are realistic.
Outlook.—Armed with our determination of C̃1 in the

MS scheme, it becomes possible to unambiguously deter-
mine the nn → ppe−e− amplitude Aν at low energies to
LO in chiral EFT. While dimensional regularization with
minimal subtraction is a convenient scheme for our
matching strategy, it is rarely used in nuclear calculations.
Since amplitudes are observables and thus scheme inde-
pendent, the LNV contact term C̃1 can be obtained in any
other scheme, for instance, in momentum- or coordinate-
space cutoff schemes often applied in the ab initio few-
body community [26–28,89,90], by fitting to our synthetic
data [The amplitude Aν is related to the S-matrix element
for the process nðpÞnð−pÞ → pðp0Þpð−p0ÞeðpeÞeð−peÞ by
Sν ¼ ið2πÞ4δð4Þðpf − piÞ½4G2

FV
2
udmββūLðpeÞucLð−peÞ�Aν.

Various choices of jpj and jp0j are possible, see Ref. [75] for
more details.]

Aνðjpj; jp0jÞe−i½δ1S0 ðjpjÞþδ1S0
ðjp0jÞ� ¼ −0.0195ð5Þ MeV−2;

ð16Þ

where jpj ¼ 25 MeV (jp0j ¼ 30 MeV) is the neutron
(proton) momentum in the center-of-mass frame.

Recent years have seen great progress in ab
initio calculations of 0νββ decay rates of light nuclei
[29–31,43,91], ranging from 6He to the experimentally
relevant 48Ca and 76Ge, in each case starting from micro-
scopic chiral nuclear forces. However, these decay rates
only include the long-distance neutrino-exchange contri-
butions and omit the C̃1 term. Once C̃1 is obtained by fitting
to Eq. (16), this omission can now be remedied and, for the
first time, complete LO calculations can be performed of
nuclear 0νββ decay rates. For even heavier nuclei such as
136Xe, which are still beyond the reach of ab initio
techniques, the impact of the contact term should be
studied indirectly, e.g., by comparing results for nuclei
accessible to both ab initio methods and the respective
nuclear model (see Ref. [92] for the same strategy in the
context of the axial-vector current).
For Aν at the kinematic point chosen in Eq. (16) and

in the MS scheme at μχ ¼ 4Mπ , we find that the contact-
term contribution adds destructively to the neutrino
exchange at the 15% level, but we stress that this is a
scale- and scheme-dependent statement, with similar
scales in cutoff schemes indicating different, in some
cases even constructive, effects [75]. Moreover, as dis-
cussed in Refs. [40,43], while a contact term of natural
size affects ΔI ¼ 0 transitions such as nn → ppe−e− at
the 10%–20% level, its effect is amplified to the level of
50%–70% in ΔI ¼ 2 nuclear transitions due to a node in
the matrix element density. Based on our result for Aν, its
effect can now be addressed in calculations of realistic
0νββ nuclear transitions, greatly reducing a crucial
uncertainty in the interpretation of future searches for
0νββ decay [93–99].
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