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We provide strong evidence that the asymptotically free (1þ 1)-dimensional nonlinear Oð3Þ sigma
model can be regularized using a quantum lattice Hamiltonian, referred to as the “Heisenberg comb,” that
acts on a Hilbert space with only two qubits per spatial lattice site. The Heisenberg comb consists of a spin-
half antiferromagnetic Heisenberg chain coupled antiferromagnetically to a second local spin-half particle
at every lattice site. Using a world-line Monte Carlo method, we show that the model reproduces the
universal step-scaling function of the traditional model up to correlation lengths of 200000 in lattice units
and argue how the continuum limit could emerge. We provide a quantum circuit description of the time
evolution of the model and argue that near-term quantum computers may suffice to demonstrate asymptotic
freedom.
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Formulating quantum field theories (QFTs) so that they
can be implemented on a quantum computer has become an
active area of research recently [1–10]. One of the first steps
in this process is to construct a suitable lattice quantum
Hamiltonian that acts on a Hilbert space realized by n qubits
at each lattice site where n is small. For bosonic quantum
field theories, including gauge theories, an exact realization
of the canonical commutation relation ½ϕx; πy� ¼ iδx;y forces
n to be infinite. For this reason, all traditional formulations of
lattice QFTs with bosonic degrees of freedom need refor-
mulation to be solvable on a digital quantum computer. A
simple way to proceed is to truncate the infinite dimensional
Hilbert space to an n-qubit subspace while preserving the
long distance physics. Universality suggests that long dis-
tance physics can often be preserved at critical points after
truncation if the symmetries of the model are preserved.
Examples of universality can be found in studies of quantum
spin models [11,12]. The idea of universality was empha-
sized recently in the context of studying sigma models using
quantum computers in Ref. [13]. The procedure of con-
structing a n-qubit lattice Hamiltonian for studying a QFT
can be viewed as an extra regularization necessary for
quantum computation and was referred to as the “qubit
regularization” of the QFT in Refs. [14,15].

As with any form of regularization, a procedure to define
the continuum limit of the n-qubit model is necessary. How
this limit emerges is not obvious in the n-qubit model, at
least when n remains finite. A common technique followed
by many groups is to approach the continuum limit using
the naive procedure of making n large, which takes us back
to the traditional theory [6,16–19]. An interesting unan-
swered theoretical question is whether all QFTs can in
principle be obtained using suitable continuum limits of n-
qubit models where n remains finite and, if so, what is the
minimal value of n necessary for each QFT?
In this Letter, we show that the asymptotically free

1þ 1-dimensional Oð3Þ nonlinear sigma model, described
in Euclidean time τ by the continuum action

S½n� ¼ 1

2g2

Z
dτdx ∂μn · ∂μn; ð1Þ

with nðx; τÞ ∈ Oð3Þ, can be regularized successfully using
the 2-qubit-per-site Hamiltonian

H ¼
X
i

JpHði;1Þ;ði;2Þ þ JHði;1Þ;ðiþ1;1Þ; ð2Þ

which we illustrate pictorially in Fig. 1 and refer to as the
Heisenberg comb. The continuum limit emerges when
J=Jp → ∞. Note that nðx; τÞ in Eq. (1) is a classical
3-vector field of unit magnitude, while Hði;aÞ;ðj;bÞ ¼ Si;a ·
Sj;b is the standard Heisenberg interaction between
spin-half operators Si;a and Sj;b, where i, j label one-
dimensional spatial lattice sites and a, b ¼ 1, 2 label the
2-qubit spaces.
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The idea of qubit regularization of field theories is not
new and was introduced many years ago in the D-theory
formulation of field theories [20,21]. The challenge is to
search the space of all n-qubit lattice Hamiltonians in d
spatial dimensions to discover the correct quantum critical
point where the original continuum quantum field theory in
dþ 1 space-time dimensions is recovered. The fine tuning
to the quantum critical point would then naturally define
the procedure to obtain the continuum limit of the n-qubit
model. Qubit regularization of conformal field theories that
emerge naturally at second order quantum critical points
between two different phases are easy to construct with
finite values of n. In this case, one has to just preserve the
important symmetries of the original QFT and tune a single
relevant parameter to the correct quantum critical point.
While this technique is well known in the literature, the
approach has found new applications recently [22].
In contrast, qubit regularization of asymptotically free

theories like QCD and the nonlinear sigma model given in
Eq. (1) is much more challenging, especially when n is
finite and fixed. This is the central topic of our Letter. In
this case, in addition to preserving the symmetries of the
QFT, one has to discover the critical point with the correct
marginally relevant coupling that preserves the physics at
all length scales from the infrared (IR) to the ultraviolet
(UV). The IR is usually characterized by a physical
correlation length ξ, while the UV is characterized by a
minimum lattice size Lmin ≪ ξ at which the universal
physics of the QFT can be observed using the lattice
theory, where even Lmin is much larger than the lattice
spacing. In the D-theory formulation, this marginal oper-
ator is obtained through the size of an extra spatial
dimension [23]. It has been shown that asymptotic freedom
in the two-dimensional CPðN − 1Þ models can be repro-
duced when the size of this extra dimension grows [24,25].
Since the size of the extra dimension naturally increases the
number of qubits per spatial lattice site, one can say that
asymptotic freedom in the traditional D-theory approach
can be obtained if n is allowed to grow.
In this Letter, we explore whether asymptotic freedom

may be achieved even with a fixed value of n by
discovering the correct marginally relevant coupling not
related to an extra dimension. We show this explicitly in the
case of the asymptotically free two-dimensional nonlinear

Oð3Þ QFT described by Eq. (1). Traditionally, this theory is
regularized using the lattice Euclidean action

S ¼ −κ
X
hi;ji;a

ϕa
i · ϕ

a
j ; ð3Þ

where i, j now label space-time lattice sites on a square
lattice and ϕa

i (a ¼ 1, 2, 3) are the three components of a
unit vector associated with the lattice site i. The continuum
limit is obtained when κ → ∞. Here we will argue that the
same continuum physics can also be obtained using the
Heisenberg-comb Hamiltonian discussed above.
The question of whether 2-qubit models can reproduce the

physics of the traditional model has been partially explored
previously. The first exploration was performed in traditional
lattice field theory using a Nienhuis-type action, which can
be viewed as a space-time lattice formulation of a 2-qubit
Hamiltonian [26]. Evidence was provided that a step-scaling
function similar to that for the traditional model is repro-
duced at two different renormalized couplings. However, it
was suggested that the continuum limit may not be
reachable using such an approach. More recently, a 2-qubit
Hamiltonian was constructed by truncating the traditional
infinite Hilbert space Hamiltonian onto the 2-qubit subspace
[27]. The mass gap of the model was computed using tensor-
network methods. While in the traditional model the mass
gap would vanish as the bare coupling was lowered, i.e.,
κ → ∞, the authors found that the mass gap did not vanish as
the bare coupling was lowered in the 2-qubit model. The
authors also showed that, as the number of qubits per lattice
site was increased, the mass gap quickly reduced, suggesting
that more qubits will be necessary to recover the original
theory. It is important to note that both of the above studies
focused on a very specific class of Hamiltonians motivated
by the traditional Hamiltonian. A more systematic search of
the model space was never carried out.
Since the SOð3Þ ⊂ Oð3Þ symmetry plays an important

role in the physics, we can narrow the search to the space of
2-qubit models invariant under this symmetry. The phase
diagram of these models is quite rich with several phases and
quantum critical points separating them [28]. In particular,
there are at least five distinct phases: phase A, where the two
qubits form local spin singlets and the spin-triplet excitations
are massive; phase B, where the spin triplets dominate and
form a ferromagnet; phase C, where the spin triplets on
neighboring sites form singlets and break translation invari-
ance spontaneously; phase D, where spin triplets form a
massive topological phase also referred to as the Haldane
phase [29–32]; and phase E, where the long distance physics
is a critical gapless phase described by level-one SUð3Þ
Wess-Zumino-Witten (WZW) conformal field theory [33].
Such a rich phase structure already suggests that previous
studies could have missed the asymptotically free fixed point.
One way to parameterize the space of 2-qubit models is to

begin with spin-half ladders whose Hamiltonian takes the
form

qubit-1

qubit-2

x x+1

Heisenberg Comb:

JJ J J J

J J
P P

J J J J
P P P P

FIG. 1. A pictorial representation of the Heisenberg comb
whose Hamiltonian is given in Eq. (2). The asymptotically free
QFT described by Eq. (1) is reproduced in the limit J=Jp → ∞.
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H ¼
X
x

JpHðx;1Þ;ðx;2Þ þ J1Hðx;1Þ;ðxþ1;1Þ

þ J2Hðx;2Þ;ðxþ1;2Þ; ð4Þ

with three tunable couplings. When Jp < 0 and large
compared to J1 and J2, we can access the physics of spin-
1 chains. In these chains, when J1; J2 < 0, we obtain the
ferromagnetic phase B. On the other hand, when J1; J2 > 0,
we can access the physics of antiferromagnetic spin-1 chains,
which is the starting point to accessing phases C, D, and E.
When Jp ¼ 0, it is well known that each of the two decoupled
spin-half chains describe the long distance physics of

S½n� ¼
Z

dτdx

�
1

2g2
∂μn · ∂μnþ iθ

4π
n · ð∂τn × ∂xnÞ

�

ð5Þ

at θ ¼ π [34]. This theory is known to be critical and
described by the k ¼ 1 SUð2Þ WZW theory [35–37].
When Jp > 0, θ is constrained to be zero, and the IR physics
of Eq. (1) is reproduced [38]. So it is likely that there exists a
critical point in the three parameter space of ðJ1; J2; JpÞ with
Jp > 0 that reproduces both the UVand IR physics of Eq. (1)
correctly. In particular, three critical points seem interesting
candidates to explore: (1) the symmetric ladder where J1 ¼
J2 ¼ 1 and Jp → 0þ, (2) the asymmetric ladder J1 > J2 and
Jp → 0þ, and (3) the Heisenberg comb J2 ¼ 0, Jp ¼ 1, and
J1 ¼ J → ∞. We will show below that the Heisenberg comb
is the correct 2-qubit model.
In order to study whether the traditional model and the 2-

qubit model quantitatively reproduce the same physics in
the continuum limit, we need to match the two theories at
all physical scales from the IR to the UV. Asymptotically
free theories are massive, and the correlation length ξ
defined by the mass gap sets the natural IR length scale. In
order to probe the UV physics we put the system in a small
box of physical size L ≪ ξ. In fact, one can use a suitably
defined finite size correlation length ξðLÞ even in the UV
such that ξðL → ∞Þ ¼ ξ. One definition of such a
length scale is the second moment definition [39],
ξðLÞ ¼ ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðG0=G1Þ − 1

p �=½2 sinðπ=LÞ� where

Gk ¼
X
ðx;tÞ

hϕ3
ðx;tÞϕ

3
ð0;0Þiei2πkx=L: ð6Þ

A quantitative way to probe all physical scales from the UV
to the IR using ξðLÞ is the universal step-scaling function
FðzÞ ¼ ξð2LÞ=ξðLÞ, where z ¼ ξðLÞ=L. This function is a
signature of the asymptotically free QFT. It probes the IR
physics for z → 0 and the UV physics for z → ∞, where it
can computed using perturbation theory. For the traditional
lattice model defined in Eq. (3), FðzÞ was computed long
ago [40]. Here we compute FðzÞ for the spin-ladder models
defined in Eq. (4) using well established continuous time

Monte Carlo methods [41–43]. In particular, there is no
sign problem for the models we study here [44].
The calculations described focus on a few specific points

in the phase space of spin ladders. In particular, we consider
the symmetric ladder with J1 ¼ J2 ¼ 1 at Jp ¼ 0.20, 0.10,
the asymmetric ladder with J1 ¼ 1, J2 ¼ 0.5 at
Jp ¼ 0.10,0.05, and the Heisenberg comb with J2 ¼ 0,
Jp ¼ 1 at J1 ¼ J ¼ 3, 5, 10. To compute ξðLÞ, we replace
Eq. (6) with

Gk¼
1

Z

Z
dτ
X
x

Tr½Oðx;τÞOð0;0Þe−βH�ei2πkx=L; ð7Þ

where Oðx; τÞ ¼ eτH½ð−1ÞxðSzx;1 − Szx;2Þ�e−τH is the usual
Heisenberg operator in imaginary time τ, Z ¼ Trðe−βHÞ is
the thermal partition function, and β is the inverse temper-
ature. We note that, on each lattice site, O creates the z
component of the triplet from the singlet and vice versa.
The ð−1Þx is required to capture the antiferromagnetic
nature of the long distance physics. We study lattice sizes in
the range 12 ≤ L ≤ 512. In a Hamiltonian formulation,
spatial correlation functions, Eq. (7), will, in general, be
different from temporal correlation functions:

G̃k¼
1

Z

Z
dτ
X
x

Tr½Oðx;τÞOð0;0Þe−βH�ei2πkτ=β; ð8Þ

where, as in the traditional model, Eq. (3), these two are
identical on square lattices due to space-time rotational
symmetry. In our calculations, we tune β as a function of L
to make Gk ≈ G̃k. These fine-tuned values of β are plotted
as a function of L in Fig. 2, which shows that for each of

16 32 64 128 256 512
L

16

32

64

128

256

512
J =  3.0
J =  5.0
J =10.0

32 64 128 256

16

32

64

128

256

FIG. 2. The value of β chosen for each value of L during
calculations of ξðLÞ in the Heisenberg comb at various values of
J. The inset shows a similar plot for the symmetric ladder (circles)
and asymmetric ladder (squares). While βðLÞ depends on J in the
Heisenberg comb, it does not depend on Jp for the parameters we
have explored in the symmetric and asymmetric ladders.
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our studies β=L becomes a constant for large L, as expected
in a relativistic theory.
Our results for FðzÞ in the qubit models are shown in two

plots in Fig. 3, along with results from the traditional model
recreated from [40]. In the left plot, we show our results for
the symmetric ladder and the asymmetric ladder. These
results show that neither of these models reproduce the
traditional model in the UV, although they are SOð3Þ
symmetric and massive in the IR. Thus, the spin ladders
may be described by Eq. (1) in the IR [38], but in the UV
they are most likely described by two decoupled k ¼ 1
SUð2ÞWZW conformal field theories, as one might expect.
In fact, for small values of Jp the mass gap in the symmetric
case is known to increase linearly as 0.41ð1ÞJp implying
that Jp is not the marginally relevant coupling we are
looking for [45].
In contrast to spin ladders, when FðzÞ is computed in the

Heisenberg comb, it matches the traditional model well for all
values ofL > Lmin. When J ¼ 3, 5, 10, we find that, in lattice
units, Lmin ≈ 30, 100, 400 and ξ ≈ 25; 600; 200000, respec-
tively. We observe that the UV scale Lmin increases with J,
and in the limit J → ∞ the asymptotically free critical point is
recovered. From Wilson’s renormalization group perspective,
after blocking to a scale of Lmin, the 2-qubit model turns into
an n-qubit model where n ¼ 2Lmin. The traditional infinite
Hilbert space of the continuum asymptotically free fixed point
is recovered in the J → ∞ limit.
Note that we define the physics of the Heisenberg comb

by setting Jp ¼ 1, J1 ¼ J and study the limit J → ∞. We
could have instead set J1 ¼ 1 and Jp ¼ 1=J and obtained

the same physics. However, this would force us to study
asymmetric lattices since now the values of β in Fig. 2
would need to be multiplied by J. One way to understand
our choice is to recognize that the value of Jp sets a UV
energy scale for our problem. The physics of Eq. (1) only
emerges at temperatures much smaller than Jp. So it is
natural in the qubit regularization to set Jp ¼ 1 and study
the physics at large values of J1 ¼ J.
An important motivation for discovering a qubit regu-

larization with a finite n is the ability to study the real time
evolution of the QFT on a quantum computer. The
simplicity of the Heisenberg-comb Hamiltonian allows
us to implement the Trotterized time-evolution operator
of the theory using a short-depth quantum circuit. To
construct this, we write the Hamiltonian as a sum of
three commuting terms: H ¼ JpH1 þ JðH2 þH3Þ where
H1 ¼

P
i∈x Hðx;1Þ;ðx;2Þ, H2 ¼

P
i∈xe Hðxe;1Þ;ðxeþ1;1Þ, and

H3 ¼
P

i∈xo Hðxo;1Þ;ðxoþ1;1Þ, where xe are even sites and
xo are odd sites. Using the standard Trotter approach, we
can then write

e−iHt ¼ e−iJpH1te−iJH2te−iJH3t þOðt2Þ: ð9Þ

In the computational basis, that is, the j�i basis for each
spin, we can view the Hamiltonian Hðx;aÞ;ðy;bÞ as a 2-qubit
operator whose matrix elements are given by a 4 × 4
matrix. The corresponding time-evolution operator
e−iJ½Hðx;aÞ;ðy;bÞþ1=4�t (with an additional global phase that
can be easily undone) takes the form

FIG. 3. Universal step-scaling function FðzÞ ¼ ξð2LÞ=ξðLÞ as a function of z ¼ ξðLÞ=L. The dark line in both plots is this function
reproduced from [40], where it was calculated using the traditional model defined by Eq. (3). The dashed line is the function
FðzÞ ¼ 2ð1 − 0.0276=z2 − 0.00258=z4Þ, computed in Ref. [40] using perturbation theory near the asymptotically free fixed point. The
left plot shows results for (1) a symmetric ladder (J1 ¼ J2 ¼ 1; Jp ¼ 0.10, 0.20) and (2) an asymmetric ladder (J1 ¼ 1, J2 ¼ 0.5;
Jp ¼ 0.05, 0.10). The right plot shows results for the Heisenberg comb at J1 ¼ J ¼ 3, 5, 10; J2 ¼ 0;Jp ¼ 1. Each data point is
constructed using two calculations, one at lattice size L and another at 2L, with 12 ≤ L ≤ 256.
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2
66664

e−iJt=2 0 0 0

0 cos ðJt=2Þ −i sin ðJt=2Þ 0

0 −i sin ðJt=2Þ cos ðJt=2Þ 0

0 0 0 e−iJt=2

3
77775: ð10Þ

This unitary transformation can be implemented using two
controlled NOT gates, one controlled unitary gate that
implements the X-rotation RXðϕÞ and one single-qubit
phase rotation PðϕÞ, given by

RXðϕÞ ¼
�

cosϕ −i sinϕ
−i sinϕ cosϕ

�
; PðϕÞ ¼

�
e−iϕ 0

0 1

�
:

ð11Þ

The quantum circuit that implements the full unitary
transformation in Eq. (10) is given in Fig. 4. The simplicity
of this circuit suggests that near-term quantum computers
may suffice to simulate dynamics for short times. An
interesting first step is to show that the critical point in
question is asymptotically free using a quantum simulator.
Similar experiments have been done for other models on a
variety of platforms [46–48].
The interesting question for the quantum computation of

asymptotically free theories like QCD is whether it is better
to regulate the theory using a small number of qubits per
lattice site and show that asymptotic freedom emerges
dynamically in the usual continuum limit, or use a
formulation with a large number of qubits per lattice site
that approximates the classical model, as is normally done.
This work on the O(3) model demonstrates that asymptotic
freedom does not necessarily require an infinite dimen-
sional local Hilbert space in a lattice model, although
intuition might lead us to believe this is necessary. By
suitably adjusting the lattice size L as J is increased to
approach the continuum limit, one can stay on the universal
scaling curve and thus deduce the properties of the
continuum theory. The question remains: which approach
is more efficient to implement on a quantum computer?
Here we have shown that the quantum circuit for the

Heisenberg comb is simple, but whether the growth of
complexity with lattice size eventually makes the other
approach more efficient remains to be investigated.
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