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We provide a universal microscopic counting for the microstates of the asymptotically AdS black holes
and black strings that arise as solutions of the half-maximal gauged supergravity in 4 and 5 dimensions.
These solutions can be embedded in all M-theory and type II string backgrounds with an AdS vacuum and
16 supercharges and provide an infinite set of examples dual toN ¼ 2 andN ¼ 4 conformal field theories
in four and three dimensions, respectively. The counting is universal and it is performed by either studying
the large N limit of the relevant supersymmetric index of the dual field theory or by using the charged
Cardy formula.
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Introduction.—The microscopic counting of black hole
microstates is a fundamental question for all theories of
quantum gravity. String theory has provided a microscopic
explanation for the entropy of a class of asymptotically flat
black holes [1]. Despite the AdS=CFT correspondence [2],
the analogous question for asymptotically anti–de Sitter
(AdS) black holes has remained elusive until recently,
except for AdS3. In the last few years there has been some
progress, first for a class of magnetically charged super-
symmetric black holes in AdS4 [3], and later for a class of
supersymmetric Kerr-Newman (KN) black holes in AdS5
[4,5]. The AdS=CFT correspondence provides a nonper-
turbative definition of quantum gravity in asymptotically
AdS space in terms of a dual boundary quantum field
theory (QFT) and the black hole microstates appear as
particular states in the boundary description. The entropy of
a supersymmetric black hole with angular momentum J
and a set of conserved electric and magnetic charges is
reproduced by counting the states with spin J and the same
quantum numbers in the dual QFT. Computations in a
strongly coupled supersymmetric QFT are difficult but the
numbers of states of interest can be extracted from super-
symmetric indices that can be often evaluated using exact
nonperturbative techniques. Supersymmetric localization
[6], for example, allows one to reduce the indices to matrix
models that can be evaluated in a saddle-point approxi-
mation when the number of colors N is large, which is the
regime where holography applies.

Unfortunately, asymptotically AdS black holes are dif-
ficult to find, and not so many 4- and 5-dimensional
examples are known besides those that can be embedded
in AdS4 × S7 or AdS5 × S5 and some universal examples
that arise from embedding minimal gauged supergravity
into string compactifications [7–10]. Some progress has
been made instead in constructing infinite classes of
supersymmetric AdS2 and AdS3 solutions that can arise
as the near horizon limit of AdS black objects [11,12]. In
this Letter, in the spirit of the above-mentioned universal
examples, we consider a large class of black holes and
black strings that arise as solutions of the half-maximal
supergravity in AdS4 and AdS5. Such solutions can be
embedded in all AdS4 and AdS5 type II or M-theory
backgrounds with 16 supercharges. Indeed, for any super-
symmetric solution of 10- or 11-dimensional supergravity
of the warped product form AdSD × wM, there is a
consistent truncation to pure gauged supergravity in D
dimensions containing that solution and having the same
supersymmetry [13–16]. This observation calls for a
universal large N formula for the number of super-
symmetric states in conformal field theories (CFT) with
8 supercharges (16 including conformal supersymmetries).
We will indeed perform a universal counting of states in
CFTs with 8 supercharges using the superconformal index
and the charged Cardy formula. Extrapolating from known
results about the large N behavior of the index in various
limits, we precisely reproduce the Bekenstein-Hawking
entropy of the black objects. We will check the results for
the known classes of CFTs with 8 supercharges that admit a
holographic dual. We will also provide a conjecture for the
R-symmetry charge dependence of the S3 free energy of 3D
CFTs with 8 supercharges. A similar universal computation
was done in [7] and in [8–10] for theories with 4 super-
charges. For other related universal results see [17–19].
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N ¼ 4 gauged supergravity in 5 dimensions.—The
bosonic part of minimal 5D N ¼ 4 gauged supergravity
[20,21] consists of the metric gμν, a Uð1ÞR gauge field aμ,
an SUð2ÞR Yang-Mills gauge field AI

μ, I ¼ 1, 2, 3, two
antisymmetric tensor fields Bα

μν, α ¼ 4, 5, and one real
scalar ϕ. The fermionic components are four gravitini
ψμi, i ¼ 1, 2, 3, 4 and four spin-1=2 fermions χi. These
fields form the N ¼ 4 gauged supergravity multiplet
ðgμν;ψμi; aμ; AI

μ; Bα
μν; χi;ϕÞ. The bosonic Lagrangian is

given by

1ffiffiffiffiffiffi−gp L ¼ −
R
4
þ 1

2
ð∂μϕÞð∂μϕÞ þ

g2
8
ðg2ξ−2 þ 2

ffiffiffi
2

p
g1ξÞ

−
ξ−4

4
fμνfμν −

ξ2

4
ðFμνIFI

μν þ BμναBα
μνÞ

þ 1

4
ffiffiffiffiffiffi−gp εμνρστ

�
1

g1
εαβBα

μνDρB
β
στ − FI

μνFI
ρσaτ

�
;

where ξ ¼ expð ffiffiffiffiffiffiffiffi
2=3

p
ϕÞ, and the field strengths are

fμ ¼ ∂νaμ − ∂νaμ, FI
μν ¼ ∂νAI

μ − ∂μAI
ν þ g2εIJKAJ

μAK
ν .

The theory with g2 ¼
ffiffiffi
2

p
g1 ¼ 2

ffiffiffi
2

p
has an AdS vacuum

with radius l5 ¼ 1 that preserves all of the 16 real
supercharges.
The universal KN black hole in AdS5.—There is a

universal solution of N ¼ 4 gauged supergravity corre-
sponding to a supersymmetric, asymptotically AdS black
hole with two electric charges Q1 and Q2 under Uð1Þ2 ⊂
Uð1ÞR × SUð2ÞR and two angular momenta J1 and J2. It
can be obtained as a particular case of the KN black holes in
AdS5 × S5 with angular momenta ðJ1; J2Þ and electric
charges ðQ1; Q2; Q2Þ under the Cartan subgroup of
SO(6) [22–26]. The latter are solutions of the Uð1Þ3
truncation of AdS5 × S5 and one can easily check that
they become solutions of the minimal N ¼ 4 gauged
supergravity when two U(1) gauge fields are identified.
The entropy can be compactly written as [27]

SðJI; QiÞ ¼ 2π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2

2 þ 2Q1Q2 − 2aðJ1 þ J2Þ
q

; ð1Þ

where a ¼ f½πl3
5�=½8Gð5Þ

N �g, with l5 being the radius of

AdS5 and G
ð5Þ
N the Newton constant is the central charge of

the dualN ¼ 2 CFT [28] at leading order in N. In order for
the black hole to have a smooth horizon, the charges must
satisfy the nonlinear constraint

0 ¼ 2Q2ðQ1 þQ2Þ2 þ 2aðQ2
2 þ 2Q1Q2Þ

− 2aðJ1 þ J2ÞðQ1 þ 2Q2Þ − 2aJ1J2 − 4a2ðJ1 þ J2Þ:
ð2Þ

The entropy (1) can be written as the constrained Legendre
transform of the quantity [29]

logZðXi;ωiÞ ¼ −4πia
X1X2

2

ω1ω2

: ð3Þ

The entropy is obtained indeed by extremizing

S ¼ logZðXi;ωiÞ − 2πiðω1J1 þ ω2J2 þ X1Q1 þ 2X2Q2Þ;

with respect to Xi and ωi with the constraint
X1 þ 2X2 − ω1 − ω2 ¼ �1. Both signs lead to the same
critical value (1) [30], which is real precisely when (2) is
satisfied. The solution can be embedded in all AdS5 type II
or M-theory backgrounds preserving 16 supercharges.
Examples of N ¼ 2 quiver theories with a holographic

dual and central charges of order OðN2Þ are provided by
orbifolds of AdS5 × S5. Another large class of N ¼ 2
theories with a holographic dual can be obtained by
compactifying N M5-branes on a Riemann surface Σg of
genus g with regular punctures [31]. We will refer to these
theories as holographic class S theories. The theories are
generically non-Lagrangian and their central charge is of
order OðN3Þ. On general grounds [14,15], one knows that
the effective 5D dual gravitational theory can be consis-
tently truncated to the minimal N ¼ 4 gauged super-
gravity. As an example, one can check explicitly that the
universal KN solution can be embedded in the compacti-
fication with no punctures, corresponding to the M-theory
AdS5 solution originally found in [32]. To this purpose we
can use the 5D consistent truncation of 7D Uð1Þ2 gauged
supergravity on Σg derived in [33–35]. The corresponding
5D theory is written as anN ¼ 2 gauged supergravity with
two vector multiplets and one hypermultiplet. At the AdS5
vacuum one vector multiplet becomes massive through a
Higgs mechanism. The theory depends on a parameter z
that specifies the twist along Σg and the preserved super-
symmetry is generically N ¼ 2 corresponding to a dual
N ¼ 1 CFT. For the special values z ¼ �1 supersymmetry
is enhanced to N ¼ 4, and, for g > 1, one obtains a dual
N ¼ 2 CFT. One can check that, for z ¼ �1 and g > 1, by
setting the hyperscalars to their AdS5 value and setting to
zero the fields in the massive vector multiplet, equations of
motion and supersymmetry variations of the theory in [33]
coincide with those of the Uð1Þ2 sector of the minimalN ¼
4 gauged supergravity. Explicitly, in the notations of [33]
we need to set e−10B=3 ¼ 2−1=3m10=3ζ, e10λ1=9 ¼ e−5λ2=3 ¼
2−1=3ζ and Að0Þ ¼ m−4=32−1=6A, with g2 ¼ 25=6m5=3.
We will now show that the entropy (1) matches the

prediction of a microscopic computation based on the
superconformal index for a generic N ¼ 2 CFT with a
holographic dual. The number of BPS states with charges
Q1, Q2 and spin J1, J2 in an N ¼ 2 CFT can be computed
(for large charges and spins) by taking the Legendre
transform of the superconformal index I , which is a
function of chemical potentials for the electric charges
and the angular momenta. The agreement between the
gravitational picture and the field theory computation
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requires log I ¼ logZ. The general expectation for an
N ¼ 1 CFT with a holographic dual is [36]

log IðΔ;ωiÞ ¼ −
4πi
27

ðω1 þ ω2 � 1Þ3
ω1ω2

aðΔÞ; ð4Þ

valid at large N. In this formula ω1 and ω2 are chemical
potentials conjugated to J1 and J2 and ðω1 þ ω2 � 1ÞΔ=2
is a set of chemical potentials for the R and flavor
symmetries of the theory. They are normalized such
that Δ can be interpreted as an assignment of R charges
to the fields of the theory with the only constraint
that the superpotential has R-charge two. Moreover,
aðΔÞ ¼ 9

32
TrRðΔÞ3, where RðΔÞ is the R-symmetry gen-

erator and the trace is taken over the fermionic fields, is the
trial a charge at large N [37]. For Lagrangian theories with
a holographic dual, formula (4) has been derived in the
large N limit in [4,10,38,39]. It is also compatible with the
Cardy limit performed in [5,8,9,40]. It has not been yet
derived in full generality for non-Lagrangian theories.
However, the Cardy limit can be also derived by writing
the effective theory of the CFT coupled to background
fields on S3 × S1 in the limit where the circle shrinks [5,9]
and this method applies also to non-Lagrangian theories.
The two signs in (4) arise in the saddle-point evaluation of
the index in different regions in the space of chemical
potentials. Consider first an N ¼ 2 Lagrangian CFT
with nV vector multiplets and nH hypermultiplets. In
N ¼ 1 language, the theory can be described by nV vector
multiplets, nV chiral multiplets ϕI , and nH pairs of chiral
multiplets ðqa; q̃aÞ. The trial R symmetry can be written as
RðΔÞ ¼ ðΔ1r1 þ Δ2r2Þ=2 with Δ1 þ Δ2 ¼ 2, where r1 is
the Uð1ÞR symmetry assigning charge 2 to ϕI and zero to
qa; q̃a and r2 is the Cartan generator of SUð2ÞR assigning
charge zero to ϕI and charge 1 to qa; q̃a. In the gravitational
dual, Q1 is the charge under r1=2 and Q2 under r2. Notice
that the exact R symmetry corresponds to Δ̂1 ¼ 2

3
, Δ̂2 ¼ 4

3
leading to canonical dimensions for the fields. We easily
compute

TrRðΔÞ ¼ ðnV − nHÞΔ1;

TrRðΔÞ3 ¼ 3nV
4

Δ1Δ2
2 þ

nV − nH
4

Δ3
1: ð5Þ

Holography requires a ¼ c at large N [28]. Using
16ða − cÞ ¼ TrR [41], this implies nV ¼ nH at leading
order in N. We then find

logIðΔ;ωiÞ ¼ −
πia
8

ðω1 þ ω2 � 1Þ3
ω1ω2

Δ1Δ2
2; ð6Þ

where a≡ aðΔ̂Þ ¼ ðnV=4Þ denotes the exact
central charge of the CFT at large N. We see that,
with the redefinitions X1 ¼ ðω1 þ ω2 � 1ÞðΔ1=2Þ and
X2 ¼ ðω1 þ ω2 � 1ÞðΔ2=4Þ, we recover (3) and the

constraint X1 þ 2X2 − ω1 − ω2 ¼ �1. For non-
Lagrangian theories, we just replace nV and nH with an
effective number of vector multiplets and hypermultiplets,
nV ¼ 4ð2a − cÞ; nH ¼ 4ð5c − 4aÞ [31]. The structure of
(5) is completely fixed by N ¼ 2 superconformal invari-
ance [42] and the previous argument still holds.
The universal black string in AdS5.—We can similarly

find a universal black string solution of N ¼ 4 gauged
supergravity as a special case of the black strings in
AdS5 × S5 found in [43] with angular momentum J, electric
charges ðQ1; Q2; Q3Þ, and magnetic charges ðp1; p2; p3Þ
when we set Q3 ¼ Q2 and p3 ¼ p2. The horizon geometry
of this solution has the topology of a warped product BTZ ×
wS2 and carries an extra conserved charge corresponding to a
momentumQ0 along the Bañados-Teitelboim-Zanelli (BTZ)
circle. Upon compactification on the circle we obtain a 4D
dyonic black hole with Lifshitz-like asymptotics. In the
special case where all of the electric charges Qi and J are
zero, the 5D solution is a domain wall interpolating between
AdS5 and AdS3 × S2. There is a constraint on the magnetic
charges p1 þ 2p2 ¼ −1, which corresponds to the fact
that the dual field theory is topologically twisted along
S2, and a further constraint involving the electric
charges: ð1þ p1ÞQ2 þ ð1þ 2p1ÞQ1 ¼ 0. The entropy of
the 4-dimensional black hole reads [43,44]

SðJ;QI; piÞ ¼ 2π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cCFT
6

�
Q0 −

J2

2k
−

F2

2kFF

�s
; ð7Þ

where F ¼ Q1 −Q2 and

cCFT ¼ −24a
ð1þ p1Þ2
2þ 3p1

;

k ¼ −2ap1ð1þ p1Þ2; kFF ¼ −2að2þ 3p1Þ: ð8Þ

We expect again that the solution can be embedded in any
AdS5 compactification preserving 16 supercharges. The
special case of class S with no punctures has been
constructed in [44], as a part of a more general compacti-
fications of M5-branes on a Riemann surface with 8 super-
charges. It is not difficult to check that the solution in [44]
becomes that of the universal black string when the theory
has 16 supercharges (κ ¼ −1, z1 ¼ −1; s1 ¼ 2 − 2g, and
t1 ¼ −2p1, in the notation of [44]), and the entropy
coincides with (7).
The result is indeed universal from the field theory point

of view. The black string is dual to a 2D CFT obtained by
compactifying theN ¼ 2 4D CFTon S2 with a topological
twist. The microscopic entropy is just the number of states
of the 2D CFT with L0 ¼ Q0, electric charges Q1 and Q2

under r1=2 and r2 and charge J under the additional
infrared SU(2) symmetry associated with rotation along
S2. These states are accounted for by the charged Cardy
formula. The latter has precisely the form (7), where cCFT is
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the central charge of the 2D CFT, k is the level of the
rotational SU(2) symmetry, and kFF the level of the flavor
symmetry r1=2 − r2 [44]. All these quantities can be
computed with an (equivariant) integration of the 4D
anomaly polynomial [44–46] and are universal because,
as already noticed, the form of the 4-dimensional anomalies
for anN ¼ 2 CFTwith a holographic dual is universal and
only depends on a ¼ ðnV=4Þ. For details on the anomaly
integration leading to (8) see [44].
N ¼ 4 gauged supergravity in 4 dimensions.—Four-

dimensional N ¼ 4 SO(4) gauged supergravity can be
obtained as the consistent truncation of 11D supergravity
on S7 [47]. The bosonic field content of this theory is the
metric gμν, two SU(2) gauge fields ðAI

μ; Ã
I
μÞ, I ¼ 1, 2, 3, a

dilaton ϕ, and an axion χ. The fermionic components are
four gravitini ψμi, i ¼ 1, 2, 3, 4, and four spin-1=2
fermions χi. These fields form the N ¼ 4 gauged super-
gravity multiplet ðgμν;ψμi; AI

μ; Ã
I
μ; χi;ϕ; χÞ. The bosonic

Lagrangian is given by

1ffiffiffiffiffiffi−gp L ¼ R −
1

2
ð∂μϕÞð∂μϕÞ −

1

2
e2ϕð∂μχÞð∂μχÞ

þ 2g2½4þ 2 coshðϕÞ þ χ2eϕ�

−
1

2
e−ϕFI

μνFIμν −
1

2

eϕ

1þ χ2e2ϕ
F̃I
μνF̃μνI

−
χ

2
ffiffiffiffiffiffi−gp εμνρσ

�
FμνIFρσI −

e2ϕ

1þ χ2e2ϕ
F̃μνIF̃ρσI

�
:

The universal KN black hole in AdS4.—The universal
4D KN solution can be obtained by specializing the general
KN black holes in AdS4 × S7 to have angular momentum J,
electric charges ðQ1; Q2; Q1; Q2Þ, and magnetic charges
ðp1; p2; p1; p2Þ under the Cartan subgroup of SO(8)
[48–50]. The magnetic charges are restricted to satisfy
p1 ¼ −p2 ≡ p, which corresponds to the absence of a
topological twist, and there is a further constraint among
charges

J ¼ Q1 þQ2

2

�
−1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16p2 þ 4π2

F2
S3
Q1Q2

s �
: ð9Þ

The entropy, given by Sðp;Q1; Q2; JÞ ¼ 2FS3
J

ðQ1þQ2Þ,

where FS3 ¼ f½πl2
4�=½2Gð4Þ

N �g is the S3 free energy of the
dual CFT, can be obtained by extremizing the functional
[51,52]

S ¼ −FS3
ðΔ1Δ2 − 4p2ω2Þ

ω
þ πi

X2
i¼1

ΔiQi þ πiωJ; ð10Þ

with the constraint Δ1 þ Δ2 − ω ¼ 2. This solution can be
embedded in any AdS4 solution of M-theory or type II
string theory with 16 supercharges.

The general expectation for a 3D N ¼ 4 CFT with a
holographic dual is that the entropy is the Legendre
transform of [52]

logIðΔ;ωÞ¼−
FS3ðΔi−2ωpiÞ

2ω
−
FS3ðΔiþ2ωpiÞ

2ω
; ð11Þ

where FS3ðΔiÞ is the S3 free energy as a function of the
trial R symmetry [53] and Δ1 þ Δ2 ¼ 2. Δ1 and Δ2 are
conjugated to the Cartan generators of the SUð2Þ × SUð2Þ
R symmetry. This formula follows from gluing gravita-
tional blocks in gravity [52], which is the counterpart of
gluing holomorphic blocks in the dual field theory [54,55].
For p ¼ 0 and the Aharony, Bergman, Jafferis, Maldacena
(ABJM) theory, (11) has been derived in the Cardy limit in
[56,57] by factorizing the superconformal index into vortex
partition functions. It is expected to hold for more general
theories and for p ≠ 0. We then find a general prediction
for the trial free energy of a generic N ¼ 4 CFT with a
holographic dual in the large N limit

FS3ðΔiÞ ¼ FS3Δ1Δ2: ð12Þ

We can explicitly check this prediction in various
examples. Holographic N ¼ 4 CFTs arise as wold volume
theories of M2-branes probing C2=Γ1 × C2=Γ2, with Γi
discrete subgroups of SU(2), where the role of Γ1 and Γ2

can be exchanged by mirror symmetry [58]. Consider, for
simplicity, the case where Γ2 ¼ Zp. The world volume
theory is based on an N ¼ 4 ADE quiver with gauge
groups UðnaNÞ corresponding to the nodes of the extended
Dynkin diagram of Γ1 and bifundamental hypermultiplets
associated with the links, flavored with the addition
of p fundamental hypermultiplets (na are the comarks:
see [59] for conventions and details). Denote by nV, nB, and
nF the total number of vector multiplets, bifundamental
and fundamental hypers, respectively. The large N limit
of the S3 partition function can be computed with the
methods in [60–62]. In the large N limit the eigen-
value distribution for a group UðnaNÞ is given by na
copies of the segment λðtÞ ¼ N1=2t with density ρðtÞ
[
R
dtρðtÞ ¼ 1]. In the large N limit, using the rules in

[61,62], we obtain

FS3ðΔiÞ ¼
nB
N1=2

π2

6
Δ2ðΔ2 − 2ÞðΔ2 − 4Þ

Z
ρðtÞ2dt

þ nV
N1=2

2π2

3
Δ1ðΔ1 − 1ÞðΔ1 − 2Þ

Z
ρðtÞ2dt

þ nFN1=2

2
ð2 − Δ2Þ

Z
ρðtÞjtjdt; ð13Þ

where we assign chargeΔ1 to the adjoint chiral in the vector
multiplet and Δ2=2 to the chiral fields qa; q̃a in the
hypermultiplets, in N ¼ 2 notations. Since the ADE
quivers are balanced (the number of hypers for each group
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is twice the number of colors), we have nV ¼ nB and we
find the saddle-point distribution

ρðtÞ ¼ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nFnVN

p
Δ2 − nFNjtj

2π2nVΔ2
2

; ð14Þ

with free energy

FS3ðΔiÞ ¼
π

3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nFnV

p
Δ1Δ2; ð15Þ

which reproduces (12) with FS3 ¼ ðπ=3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2nFnV

p
. The

previous computation for Γ1 ¼ Zq was already done in
disguise in [63]. Notice that FS3 ¼ OðN3=2Þ, as expected
for M2-brane theories. Formula (15) can be also derived
from the identification of the trial free energy with the
volume functional of the transverse Calabi-Yau [61,64].
M2-branes probing Abelian hyper-Kähler orbifolds of C4

can be also realized in terms ofN ¼ 4 circular quivers with
nonzero Chern-Simons terms [65]. The simplest example is
actually ABJM itself, whose free energy has been com-
puted in [61] and reads FS3ðδiÞ ¼ 4FS3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ1δ2δ3δ4

p
, where δi

are conjugated to the Cartan subgroup of SO(8) and satisfyP
4
i¼1 δi ¼ 2. This reduces to (12) for δ3 ¼ δ1 ¼ Δ1=2

and δ4 ¼ δ2 ¼ Δ2=2. Using and extending the results in
[63,66], one can also compute the free energy for the
more general N ¼ 4 quivers discussed in [65] and check
that (12) is valid. Notice that in all these examples the
SUð2Þ × SUð2Þ R symmetry acts differently from the case
with no Chern-Simons and is fully visible once the theory is
written in terms of both standard and twisted hyper-
multiplets [67–69]. Another large class of N ¼ 4 holo-
graphic quivers are the Tρ

σðGÞ theories [70] whose
gravitational dual was found in [71,72]. The refined free
energy on S3 for T(SUðNÞ) has been recently computed in
the large N limit in [73] and it reads FS3 ¼ 1

2
Δ1Δ2N2 logN

which also agrees with (12). The prediction (12) can be also
checked for a larger class of Tρ

σðGÞ theories [74].
The universal twisted black hole in AdS4.—We can

obtain dyonic black holes with a twist (magnetic charge for
the R symmetry) and horizon AdS2 × Σg, where Σg is a
Riemann surface of genus g, by specializing the corre-
sponding solution in AdS4 × S7 [75–77]. For g ¼ 0 we can
add an angular momentum J [78]. The case of static
solutions of minimal gauged supergravity has been already
discussed in [7,18]. Solutions with a genericN ¼ 4 choice
of charges are not regular and we will not discuss them
further. One can check however that the comparison
between the gravity entropy functional and the large N
limit of the (refined) topologically twisted index would still
agree [since it is also based on (12) [52] ], although the
extremization leads to a nonphysical value for the entropy.
For J ¼ 0 one can find an off-shell agreement by consid-
ering the Euclidean black saddles discussed in [79].
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