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We study the relative entropy of highly excited quantum states. First, we sample states from the Wishart
ensemble and develop a large-N diagrammatic technique for the relative entropy. The solution is exactly
expressed in terms of elementary functions. We compare the analytic results to small-N numerics, finding
precise agreement. Furthermore, the random matrix theory results accurately match the behavior of chaotic
many-body eigenstates, a manifestation of eigenstate thermalization. We apply this formalism to the
AdS=CFT correspondence where the relative entropy measures the distinguishability between different
black hole microstates. We find that black hole microstates are distinguishable even when the observer has
arbitrarily small access to the quantum state, though the distinguishability is nonperturbatively small in
Newton’s constant. Finally, we interpret these results in the context of the subsystem eigenstate
thermalization hypothesis (SETH), concluding that holographic systems obey SETH up to subsystems
half the size of the total system.
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Introduction.—Random matrices are a unifying subject
in quantum physics. From encoding quantum information
[1], to characterizing complicated many-body systems and
quantum chaos [2], to serving as toy models of the black
hole information problem [3,4], random quantum states
have become invaluable across many distinct subfields.
Moreover, the mathematical field of random matrix theory
is very mature, enabling analytical calculations in random
states that would be otherwise intractable.
With the broad motivations of understanding structural

properties of density matrices, quantum thermalization
in isolated many-body systems, and the black hole
information problem, we study the relative entropy of
random quantum states. The applicability of this study
to elucidating our motivating principles will subsequently
be made clear.
The relative entropy between two density matrices ρ and

σ is defined as

DðρkσÞ ≔ Tr½ρðlog ρ − log σÞ�: ð1Þ
As a distinguishability measure, it obeys various nice
properties, such as positivity with DðρkσÞ ¼ 0 if and only
if ρ ¼ σ. Crucially, the relative entropy is monotonic under
quantum operations [5]

D½N ðρÞkN ðσÞ� ≤ DðρkσÞ; ð2Þ

where N is any completely positive trace-preserving map.
A particularly important quantum operation that we will
come back to is the partial trace. Monotonicity in this
context means that density matrices become less distin-
guishable as you throw out more information about them,
an intuitive notion.
Relative entropy is truly the mother of all quantities in

quantum information theory. While at face value, it just
measures the distinguishability between two density matri-
ces, upon further inspection, its fundamental properties
underlie many of the deepest universal statements about
quantummechanics [6,7], quantum field theory [8–10], and
quantum gravity [11,12].
While this progress has been significant, we will show

that relative entropy has quite a bit more to tell us about
each of these subdisciplines. (1) By finding a closed form
solution for the relative entropy of random density matri-
ces, we characterize the space of quantum states. In the
language of quantum hypothesis testing [13,14], this
precisely determines the error that one achieves for a
measure one set of quantum states when performing a
hypothesis test with limited access to the quantum state.
(2) While our general formula is exact in the limit of large
Hilbert space dimensions, we find it to be remarkably
accurate even for small Hilbert space dimensions. More
interestingly, we find it to accurately predict the behavior of
relative entropy between eigenstates of chaotic many-body
Hamiltonians. These numerical observations imply that our
results may be observable in noisy intermediate-scale
quantum (NISQ) technologies [15]. (3) Through applying
our formalism to holographic quantum field theories, we
conclude that the relative entropy between subregions of
black hole microstates is finite, though nonperturbatively
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small in Newton’s constant (GN) up until the subregion is
half of the total system size. Using quantum information
inequalities, we show that this implies an extremely strong
version of the eigenstate thermalization hypothesis [16,17].
Random mixed states.—We begin with a Haar random

pure state on a bipartite Hilbert space HA ⊗ HB [18]

jΨi ¼
XdA
i¼1

XdB
α¼1

XiαjiiA ⊗ jαiB; ð3Þ

where the states in the sum are orthonormal bases for the
sub-Hilbert spaces of dimensions dA and dB which we will
always assume to be independently large. The Xiα’s
are independently distributed complex Gaussian random
variables with joint probability distribution [18,19]

PðfXiαgÞ ¼ Z−1 exp ½−dAdBTrðXX†Þ�; ð4Þ

where Z is the normalization constant, ensuring the
expression defines a probability. Here, X represents the
rectangular matrix whose matrix elements in the i, α basis
are Xiα. The random induced states on HA are then

ρA ¼ XX†

TrðXX†Þ : ð5Þ

We note that the denominator is a random variable that is
sharply peaked around unity, so we can ignore it in the limit
of large Hilbert space dimension [18,19]

ρA ≃ XX†: ð6Þ

This defines the Wishart ensemble. We now introduce a
diagrammatic representation of the density matrix [20–22]

ð7Þ

The solid and dashed lines correspond to subsystems A and
B, respectively. Matrix manipulations are done at the
bottom edge of the diagram. For example, the partial trace
over HB is

ð8Þ

Ensemble averaging is done at the top of the diagram with
propagators carrying weight

ð9Þ

Putting these operations together, we can, for example, take
the trace of the density matrix

ð10Þ

where every closed loop gives a factor of the Hilbert space
dimension. The diagrammatic rules for averaging assert
that we must sum over all possible contractions of the bras
and kets. For relative entropy, we need two independent
density matrices, ρA and σA. These must be averaged over
the ensemble separately. To make this distinction, we color
σA red.
The logarithms in the definition of relative entropy make

the quantity significantly more difficult to compute ana-
lytically than simple powers of the density matrices.
Happily, a replica trick for the relative entropy has been
developed that reexpresses the logarithm as a limit of
appropriate powers [23]

DðρkσÞ ¼ lim
n→1

1

n − 1
ðlog Trρn − log Trρσn−1Þ: ð11Þ

We will compute these two terms separately. The first term
is recognized as minus the Rényi entropy. For n ¼ 2, we
have

ð12Þ

The ensemble average is a sum of the two contractions

ð13Þ

immediately giving d−1A þ d−1B . This can be generalized to
arbitrary powers. Because of the sum over all possible
contractions, in general, the moments are expressible as a
sum over the permutation group

hTrρnAi ¼
1

ðdAdBÞn
X
τ∈Sn

dDðη−1∘τÞ
A dDðτÞ

B ; ð14Þ

where Dð� � �Þ is the number of cycles in the permutation
and η is the cyclic permutation. Each permutation corre-
sponds to a diagram with the cycle structure determining
which bra is contracted with which ket. For example, in
Eq. (13), the first diagram corresponds to the identity
permutation because each bra is contracted with its own ket
while the second diagram corresponds to the swap permu-
tation because the bra of the first density matrix is
contracted with the ket of the second and vice versa.
These are the only elements of S2.
When the Hilbert spaces are large, only the terms that

maximize Dðη−1∘τÞ þDðτÞ will contribute to the sum at
leading order. These are known as the noncrossing permu-
tations and have Dðη−1∘τÞ þDðτÞ ¼ nþ 1. Much is
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known about this special subset of permutations including
that the number of such permutations withDðη−1∘τÞ ¼ k is
given by the Narayana number [24,25]

Nn;k ¼
1

n

�
n
k

��
n

k − 1

�
: ð15Þ

Thus, the sum can be reorganized as

hTrρnAi ¼
1

ðdAdBÞn
Xn
k¼1

Nn;kdkAd
nþ1−k
B

¼ d1−nA 2F1

�
1 − n;−n; 2;

dA
dB

�
; ð16Þ

where 2F1 is a hypergeometric function. This reproduces
Page’s famous result [26].
Next, we consider the second term of Eq. (11). For

simplicity, we first consider the overlap between the two
density matrices which, as a diagram, looks like

ð17Þ

We must ensemble average the black and red lines
separately, so there is only a single term

ð18Þ

giving d−1A . We again generalize this to arbitrary powers by
expressing the moments in terms of a sum over the
permutation group

hTrðρAσn−1A Þi ¼ 1

ðdAdBÞn
X

τ∈1×Sn−1

dDðη−1∘τÞ
A dDðτÞ

B : ð19Þ

The crucial difference between this expression and Eq. (14)
is that the sum is only over a subgroup of permutations,
namely the ones that stabilize the first element. The first
element (black lines) must be stabilized because the black
lines must be contracted with themselves and there is only a
single element with black lines. The reason the swap
permutation was not included in Eq. (18) is because it
acts nontrivially on the first density matrix.
The number of noncrossing permutations stabilizing the

first element is given by the Narayana number, Nn−1;k. This
can be seen from the diagrams which are topological in
nature

ð20Þ

The diagrams maximizing the total number of loops are all
of the noncrossing ones acting only on the (n − 1) red
indices. We can then reorganize the sum as

hTrρAσn−1A i ¼ 1

ðdAdBÞn
Xn−1
k¼1

Nn−1;kdkAd
nþ1−k
B : ð21Þ

Like the Rényi entropies, this may also be written as a
hypergeometric function,

hTrρAσn−1A i ¼ d1−nA 2F1

�
1 − n; 2 − n; 2;

dA
dB

�
: ð22Þ

Combining Eqs. (16) and (22), we can unambiguously take
the n → 1 limit to find the relative entropy [27]

DðρAkσAÞ ¼ 1þ dA
2dB

þ
�
dB
dA

− 1

�
log

�
1 −

dA
dB

�
: ð23Þ

This is our main result. This formula is zero when
dA=dB → 0. This is to be expected because density matrices
become indistinguishable when most of the information
is “traced away.” The relative entropy monotonically
increases with dA=dB, reaching a curious value of 3=2
when dA ¼ dB. This monotonic behavior is a restatement of
the monotonicity of relative entropy under the partial trace.
For dA > dB, the density matrices are rank deficient leading
to the formula breaking down and the relative entropy
is formally infinite. We plot this function in Fig. 1 and
compare to numerics, finding very good agreement even for
the relatively small Hilbert space dimensions that are
accessible on a classical computer.
We briefly comment on the implications of Eq. (23) for

quantum hypothesis testing, which represented a break-
through in the operational meaning of quantum relative
entropy [13,14]. Say you are given a quantum state that is
either ρ or σ and you wish to determine which one you
have using quantum measurements. Quantum Stein’s
Lemma states that the optimal asymptotic rate of error

0.001 0.010 0.100 1
10 4

0.001

0.010

0.100

1

FIG. 1. Comparison of Eq. (23) (dashed line) with numerics.
The blue, red, and green data points are for total Hilbert space
dimensions of 1024, 6561, and 15625, respectively. The fluctua-
tions in the relative entropy are clearly suppressed as the
dimension is increased, signaling self-averaging.
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in determining which state you have is given by e−DðρkσÞ
[13,14]. Thus, Eq. (23) tells us that if we are only given
partial information about the state (access to sub-Hilbert
space A), for a measure one set of quantum states, the error
will either vanish if A is larger than half the total system
size or is finite and exponentially close (in the entropy) to
the maximal error rate if A is smaller than half the total
system size.
Black hole microstates.—Here, we reinterpret Eq. (23) in

the context of the AdS=CFT correspondence [31]. In
AdS=CFT, high energy eigenstates in the boundary con-
formal field theory are dual to black hole microstates in the
bulk because the correspondence is an isomorphism
between the bulk and boundary Hilbert spaces. By black
hole microstate, we therefore mean individual eigenstates
of quantum gravity. Together, these microstates comprise
the famous Bekenstein-Hawking entropy of the black hole
[32,33]. Precise enumerations of these microstates have
been performed for special black holes [34,35], though the
general statement that the Bekenstein-Hawking entropy is
truly a microscopic entropy is widely believed to be true.
Computations of relative entropy tell us how well we can

distinguish different black hole microstates of similar
energy, i.e., within the same microcanonical energy band
[36], a notoriously difficult task that, a priori, one
would expect to require knowledge of the full ultraviolet
complete quantum gravity theory, such as string theory
[34]. Surprisingly, we show that this is actually possible
just from semiclassical gravity, which is related to the
recent surprise that the Page curve can be calculated from
semiclassical gravity [39,40].
This is simplest for “fixed-area states” [41,42], which are

holographic states where the areas of extremal surfaces in
the bulk have been measured. These states have played an
important role in understanding holographic entanglement
entropy in the language of quantum error correction. While
we first perform computations in the fixed-area state basis,
we can translate these results to true energy eigenstates by
noting that eigenstates are superpositions of fixed-area
states with sharply peaked Gaussian distributions of width
Oð ffiffiffiffiffiffiffi

GN
p Þ [43]. We will return to this translation in the

discussion.
While many details can be found in the original papers

and illuminating follow-ups [43–47], we will only present
what is necessary for our analysis. We consider states
where the areas of two extremal surfaces, γ1 and γ2, have
been measured, as depicted in Fig. 2. The two surfaces
wrap the black hole horizon in topologically distinct
manners [48].
To compute the relative entropy between two different

black hole microstates, we must compute

TrðρAσn−1A Þ ¼ ZðρAσn−1A Þ
ZðρAÞZðσAÞn−1

; ð24Þ

whereZ is the gravitational path integral with the boundary
conditions dictated by the argument. Because of nice
properties of fixed-area states, the only contributions to
the path integrals come from the conical deficits that can
occur at γ1 and γ2, leading to

TrðρAσn−1A Þ ¼
X

τ∈1×Sn−1

eðDðη−1∘τÞA1þDðτÞA2Þ=4GN

enðA1þA2Þ=4GN
; ð25Þ

where A1 and A2 are the areas of the fixed surfaces. This
expression is identical to Eq. (19) once we identify dA ¼
eA1=4GN and dB ¼ eA2=4GN . A similar conclusion is made
for TrðρnAÞ. Therefore, the relative entropy between black
hole microstates is given by Eq. (23), which is UV finite
because while the areas are themselves divergent, their
difference is regulator independent. It is important to note
that for small A1, i.e., small boundary subregion A, the
relative entropy is nonzero, meaning the two black
hole microstates are distinguishable even with very limi-
ted information about the state. The catch is that the
distinguishability is nonperturbatively small in Newton’s
constant, Oðe−1=GN Þ. However, as A1 approaches A2, the
relative entropy becomes Oð1Þ. The transition from
Oðe−1=GN Þ to Oð1Þ occurs in an extremely tiny window
when ðA2 − A1Þ=4GN ≲ log 2, roughly meaning that region
A contains one less qubit of information than region B.
In passing, we note that these results also apply to the

relative entropy of two states in the Jackiw-Teitelboim
gravity plus end-of-the-world brane model of black hole
evaporation from Ref. [47] in the case that the black hole is
in the microcanonical ensemble.
Subsystem eigenstate thermalization.—The sub-

system eigenstate thermalization hypothesis (ETH) is a

FIG. 2. Depicted is a black hole geometry with the boundary
partitioned into regions A and B. There are two competing
extremal surfaces, γ1 and γ2, that we fix the area of. When
performing the replica trick, we compute the path integral on n
copies of this geometry. Each bulk region is labeled by the
permutation element that governs how it is glued among the
copies.
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generalization of the standard local ETH story and is
significantly stronger. While the ETH is a statement about
local operators [16,17], the subsystem ETH is a statement
that finite subregions appear thermal. Precisely, the sub-
system ETH holds when sufficiently highly excited eigen-
states have reduced density matrices that are exponentially
close in trace distance to some universal density matrices,
such as the microcanonical ensemble [51]

Tðρψ ; ρunivÞ ≔ jρψ − ρunivj1 ≤ Oðe−SðEÞ=2Þ; ð26Þ

where eSðEÞ is the density of states of the full system. In the
context of holography, the entropy scales asOðG−1

N Þ, so the
subsystem ETH means that the trace distance is non-
perturbatively small in Newton’s constant.
To prove this, we now invoke the quantum Pinsker

inequality [52]

DðρkσÞ ≥ 1

2
Tðρ; σÞ2: ð27Þ

We previously found DðρAkσAÞ to scale as Oðe−1=GN Þ for
any two black hole microstates with fixed area. This
implies that the trace distance is, at most, Oðe−1=GN Þ.
The trace distance defines a metric on the space of density
matrices, so if a typical state is close to a measure one set of
all other states, then the universal density matrix should sit
within this ball. We therefore claim that fixed-area states in
all dimensions obey the subsystem ETH for subsystems
less than half the total system size. The violation of the
subsystem ETH only occurs when ðA2 − A1Þ=4GN ≲ log 2.
Discussion.—There are various interesting directions

that one may take: (i) We have computed the average
relative entropy between typical random mixed states.
However, we have not fixed the complete distribution. It
would be interesting to characterize the fluctuations in
relative entropy. Higher moments of the relative entropy
can be computed using the same technology that we have
developed. (ii) In our applications to holography, we
focused on fixed-area states. More generic states are
superpositions of fixed-area states. It is important to study
the relative entropy of these more generic states to verify
that it is qualitatively similar. We can invoke the joint
convexity of the trace distance [53]

T

�X
i

piρi;
X
i

qiσi

�
≤ Tðpi; qiÞ þ

X
i

piTðρi; σiÞ; ð28Þ

where the ρi and σi’s are fixed-area states and Tðpi; qiÞ is
the classical trace distance between probability distribu-
tions. We have already shown that the second term on the
right-hand side is Oðe−1=GN Þ. If we assume that the
probability distributions are Gaussian with equal widths
but centered at fixed areas a distance at most Oðe−1=GN Þ
apart, i.e., within the same microcanonical window, then it

is a straightforward exercise to confirm that the first term is
also Oðe−1=GN Þ, confirming the subsystem ETH [54].
However, if the widths of the Gaussian distributions are
different, even by an amount polynomial in GN , the bound
will no longer be tight. It would be fascinating if these
corrections could lead to violations of eigenstate thermali-
zation. (iii) One of our motivations to study random states is
that they should be representative of generic excited states
in chaotic quantum systems. It is clearly interesting
to check how accurately our results characterize real
Hamiltonian systems (beyond holography). We provide
numerical results for the Sachdev-Ye-Kitaev (SYK) model
and for spin chains in the supplemental material [28]. While
the SYK eigenstates mimic random matrix theory, we find
that chaotic spin chain eigenstates have close to, but larger,
relative entropy than random states and integrable eigen-
states have even larger relative entropy and much larger
fluctuations. We hope to report a more systematic study in
the future.

I am grateful to Chris Akers, Hong Liu, Pratik Rath,
Shinsei Ryu, Hassan Shapourian, and Shreya Vardhan
for helpful discussions and comments and to Kazumi
Okuyama for explaining how to simplify the functional
form of Eq. (23). I am supported through a Simons
Investigator Award to Shinsei Ryu from the Simons
Foundation (Grant No. 566166).

Note added.—Recently, I became aware of an independent
project with similar results on the computation of relative
entropy [55].
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