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We introduce a novel tensor network structure augmenting the well-established tree tensor network
representation of a quantum many-body wave function. The new structure satisfies the area law in high
dimensions remaining efficiently manipulatable and scalable. We benchmark this novel approach against
paradigmatic two-dimensional spin models demonstrating unprecedented precision and system sizes.
Finally, we compute the ground state phase diagram of two-dimensional lattice Rydberg atoms in optical
tweezers observing nontrivial phases and quantum phase transitions, providing realistic benchmarks for
current and future two-dimensional quantum simulations.
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Recent experiments investigated one- and two-dimen-
sional lattice quantum many-body systems at unprec-
edented sizes, calling for a continuous search of
numerical techniques to provide accurate benchmarking
and verification of future quantum simulations [1–9]. In
particular, Rydberg atoms in optical tweezers are one of the
most promising platforms for the study of quantum phase
transitions, quantum simulation and computation [10–19].
In the last decades, Monte Carlo and Tensor Networks (TN)
algorithms have been employed widely to study quantum
many-body systems, and they are routinely used to bench-
mark quantum simulation results [20–30]. However,
Monte Carlo methods are limited by the sign problem
[31], while combining accuracy and scalability in simulat-
ing high-dimensional systems still represent an open
challenge for TN methods [32,33]. Here, we introduce a
novel TN variational Ansatz, able to encode the area law of
quantum many-body states in any spatial dimension by
keeping a low algorithmic complexity with respect to
standard algorithms (see Fig. 1), thus opening a pathway
towards the application of TN to high-dimensional systems.
Hereafter, we benchmark this approach against spin models
up to sizes of N ¼ 64 × 64, in and out of criticality. Finally,
we simulate 2D Rydberg-atom lattices at sizes of up to
∼1000, demonstrating the ability of providing the missing
benchmarks for very recent quantum simulation experi-
ments [34–37]: nontrivial phase transitions are character-
ized, in agreement with those experimentally observed
in Ref. [34].
In the last three decades, TN have been developed and

applied to classically simulate quantum many-body sys-
tems, representing the exponentially large wave function
with a set of local tensors connected via auxiliary indices
with a bond-dimension m. The bond dimension m allows

us to control the amount of information in the TN,
interpolating between mean field (m ¼ 1) and the exact
but inefficient representation. While for one-dimensional
(1D) systems the matrix product states (MPS) are the
established TN geometry for equilibrium and out-of-
equilibrium problems with open boundary conditions,
the development of TN algorithms for 2D or 3D systems

(a) (b)
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FIG. 1. (a) An aTTN for a 8 × 8 2D system: The disentanglers
inDðuÞ are applied to the TTN state jψTTNi across the boundaries∂ν of each link ν, in order to fulfill the area law depicted (b) for a
sublattice A (shaded region) and its boundary ∂A (purple dots).
(c),(d) Relative error of the Ising model ground state energy
computed with the aTTNs and the TTNs. While for L ¼ 8 the
precision achieved with the two methods is the same, a clear
improvement emerges for L ¼ 64.
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is still ongoing [38–43]. The most successful TN repre-
sentations are the projected entangled pair states (PEPS)
[44–47] and the tree tensor networks (TTN) [48–51], as
well as the multiscale entanglement renormalization
Ansatz (MERA) [52–54]. The PEPS flourishes for (infin-
ite) 2D systems with open boundary condition and small
physical dimension d and MERA provides an efficient
representation in critical systems. The TTN offers a very
flexible geometry which has proven to be a valid alter-
native with its particular strong points ranging from
applications in gapped 1D systems with periodic boun-
dary conditions [28,50], 2D systems with large local
dimension d [24,51] to 3D systems [55].
TNs shall satisfy entanglement bounds under real-space

bipartitions, known as area laws, of the physical states they
represent [39,45,56]. The PEPS is the potentially most
powerful TN Ansatz and by construction satisfies the area
laws of entanglement [56]. However, it suffers from a high
algorithmical complexity [typically Oðm10Þ for finite-sized
PEPS [46,57,58] ] and lacks an exact calculation of expect-
ation values. Indeed, the exact contraction a finite square
lattice of the complete PEPS scales exponentially with the
system linear dimension L and sophisticated numerical
methods shall be introduced to mitigate this unfavorable
scaling [58–63]. On the contrary, the MERA in two
dimensions is able to calculate expectation values exactly
while satisfying area law but suffers from an even higher
algorithmical complexity [at least Oðm16Þ] [56]. Another
well-established approach is to extend the MPS for 2D
systems [64]: this approach has a very low algorithmic
complexity [Oðm3Þ], however, it is limited by an expo-
nential scaling of the required bond dimension m ∼ eLk

with the system minimal linear size Lk ≡min fLx; Lyg. As
a compromise, TTNs are equally scalable in both system
dimensions while still benefiting from a low numerical
complexity, Oðm4Þ but may fail to satisfy the area law for
large systems sizes in higher dimensions [32,65].
Hereafter, we introduce a novel Ansatz which augments

the TTN and show that is able to encode the area law
keeping constant the algorithmic complexity to [Oðm4Þ] in
any physical dimension. As numerically demonstrated
hereafter, the augmented tree tensor network (aTTN) allows
us to efficiently tackle open challenges in two- and three-
dimensional systems at sizes inaccessible before.
Augmented tree tensor network.—The aTTN Ansatz

jψ aTTNi ¼ D†ðuÞjψTTNi is based on a TTN wave function
(a binary tree) jψTTNi ∈⊗N

i Hi, with Hi ¼ Cd, with an
additional sparse layer DðuÞ ¼ Q

k uk of two-site unitary
operators fukg acting on (some of) the physical links of the
TTN (see Fig. 1). The additional layer DðuÞ contains ND
independent nonoverlapping (i.e., acting on different cou-
ples of sites of the lattice L) and thus commuting disen-
tanglers fukg. In this way, DðuÞ describes a unitary
mapping of the Hamiltonian H to an auxiliary
Hamiltonian Haux ¼ DðuÞHD†ðuÞ. Each local

transformation uk aims to decouple—or disentangle in
the spirit of the MERA language [54]—entangled degrees
of freedom in the quantum many-body state, that are then
trivially included in the TTN layer. As described in the
following, DðuÞ modifies the TTN in such a way that the
aTTN satisfies the area law while keeping the complexity
for the optimisation at Oðm4Þ. Thus, the aTTN overcomes
the drawback of the TTN while maintaining its main
advantages: (i) the low scaling with the bond dimension
m compared to both MERA and PEPS, and (ii) the ability to
contract the network exactly. We stress that the aTTN can
be applied straighforwardly to a general D-dimensional
system. Finally, we notice that the aTTN is effectively a
particular subclass of a MERA, where the structure scale
invariance is traded for efficiency, as the scale invariance is
not necessary to ensure the area law at the tensor structure
level. Figure 1(a) reports an illustrative example of an
aTTN for a two-dimensional 8 × 8 system with the DðuÞ
layer composed by 6 disentanglers uk (green). Notice that
not every physical site j is addressed by a disentangler, a
key property for preserving numerical efficiency. Indeed,
the disentangler positioning is critical in order to (i) keep an
optimal numerical complexity for the optimization and
(ii) efficiently encode an area law in the TN.
Area law in aTTN.— Hereafter, we specialize the

discussion for the case of a two-dimensional square lattice
L with N ¼ L × L sites, and L ¼ 2n. Moreover, we
consider a binary TTN, where the tree tensors coarse grain
neighboring sites for each layer Λl alternatingly along the x
(for even l) and the y direction (odd l) with l going from
l ¼ 1 addressing the topmost layer to l ¼ logL for the
lowest layer [Fig. 1(a)]. Each link ν of the tree bipartites the
whole system L into two subsystems A½ν� and B½ν�,
separated by the boundary ∂ν with length γν. The area
law implies that the entanglement entropy of the bipartition
SðA½ν�Þ (or B½ν�, respectively) scales with γν. Thus, in order
to faithfully represent the area law, the bond dimension mν

of each link ν should scale with mν ≈ ecγν , where c is a
constant factor. This scaling argument implies that for two
dimensions the TTN Ansatz requires an exponentially large
bond dimension m within the topmost layers, for which
γν ∼ L. In conclusion, with increasing L a TTN represen-
tation eventually fails to capture area law states’ properties
as it becomes exponentially inefficient. This necessary
exponential scaling of the bond dimension can be prevented
by inserting the tensors layer DðuÞ that augments the TTN
with ND ¼ P

νKν disentanglers, where Kν is the number
of disentanglers along the boundary ∂ν for each link ν.
More precisely, each disentangler uk is positioned such that
it acts on one physical site in the subsystems A½ν� and the
other in subsystems B½ν�. Thus, each disentangler can
maximally assess information in a d2-dimensional space
belonging to two local Hilbert spaces, reducing the entan-
glement for the TTN up to the order of d2. As a result, all
the Kν disentanglers support the TTN link ν by
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disentangling information on the order of mν;aux ≈ ðd2ÞKν .
Therefore, when applying DðuÞ, the information assessed
by the aTTN for the bipartition defined by each link ν scales
with mν;eff ≈mν;auxmν ¼ d2Kνþξν , where we introduced the
parameter ξν ≡ logd mν describing the contribution of the
TTN bond dimension mν. If we now impose Kν ∼ γν, we
obtain the exponential scaling required to encode the area
law for the two-dimensional aTTN state. Notice that the
number of disentanglers Γl ¼

P
ν∈Λl

Kν for each layer shall
be directly proportional to

P
ν∈Λl

γν ∼ L. However, placing
exactly L disentanglers for each layer of the tree may lead
to an unfavorable, L-dependent scaling of Oðm4dLÞ for the
computational complexity. Thus, a careful balance between
the position of the disentanglers and their density has to be
found. This balance can be found as when no couple of
disentanglers is directly connected by a Hamiltonian
interaction term, the algorithmic scaling remains of the
order Oðm4d2Þ. Moreover, the area law is still satisfied,
removing the disentanglers crossing the boundaries of the
bipartitions ∂ν corresponding to the lower layers of the tree
(l → logL). On the contrary, one shall keep the maximal
allowed number of disentanglers (i.e., not connected by
Hamiltonian terms) to support the boundaries correspond-
ing to the higher branches (l → 1). Indeed, for ν ∈ Λl with
l → logL, the TTN bond-dimensionmν is sufficiently large
to capture the area law entanglement—or even the complete
state—accurately, especially for reasonably small local
dimensions d. Instead, the contribution ξν of the TTN is
negligibly small for ν ∈ Λl with l → 1 compared to the
required exponentially large bond dimension, calling for
the support of the disentanglers.
In conclusion, different disentangler configurationsDðuÞ

exist, matching the aforementioned criteria, computational
efficiency and the area law. In our numerical simulations,
the final resulting precision was not significantly affected
by the particularly chosen configuration (for details see
Supplemental Material [66]).
Ising model.—We first benchmark the aTTN Ansatz

against the ordinary TTN via a ground state search on
the ferromagnetic 2D Ising model with periodic
boundary conditions (BC). We consider a L × L lattice
with L ¼ f8; 16; 32; 64g and the Ising Hamiltonian
H ¼ P

L
i;j¼1 σ

x
i;jσ

x
iþ1;j þ σxi;jσ

x
i;jþ1 þ

P
L
i;j¼1 σ

z
i;j, where σγi;j

(with γ ∈ fx; y; zg) denote the are Pauli matrices acting on
the site ði; jÞ. For small system sizes (L ¼ 8 and L ¼ 16)
both the TTN and the aTTN reach the chosen machine
precision of 1E-8 with high bond dimension. However, as
expected, for larger sizes we find a significant improvement
in the precision of the aTTN simulations. Indeed, the
different performances become evident for L ¼ 32 and
L ¼ 64, as the aTTN and the TTN converge with increasing
bond dimension to different values for the energy Fig. 1
reports the relative error ϵm ¼ jðhHim − EexÞ=Eexj for
increasing bond dimension m with respect to the energy
Eex obtained by extrapolating the results of the aTTN for

L ¼ 8 and L ¼ 64 (For the L ¼ 16, 32 results see Fig. 3 in
the Supplemental Material [66]).
Heisenberg model.—We now analyze the more challeng-

ing critical antiferromagnetic two dimensional Heisenberg
model H ¼ P

L
i;j¼1

P
γ∈fx;y;zg σ

γ
i;jσ

γ
iþ1;j þ σγi;jσ

γ
i;jþ1, with

periodic BC. In Fig. 2 we compare the estimated energy

FIG. 2. Relative error ϵ of the 2D Heisenberg ground-state
energy as a function of the system linear size L for the TTN,
aTTN, NNS [68], NAQS [69], EPS [70], PEPS [58], 2D-DMRG
[64] (circles, squares and triangles indicate open BC, periodic BC
and cylindrical BC, respectively) each compared with the best
available estimates obtained by MC with the same BC (for pbc
[22], for obc [58] obtained via ALPS library [75–77]).

FIG. 3. Up: Phase diagram as a function of the detuning Δ and
the nearest-neighbors interaction energy Vnn. The disordered
phase is characterized by a substantially uniform distribution of
the excitations, while in the phases Z2 and Z4 the excitations are
distributed as shown in the upper (Z4) and lower (Z2) insets.
Down: Renormalized structure factor S0ðkÞ ¼ SðkÞ=Sð0Þ for
Vnn ¼ 46 MHz and (a) Δ ¼ 28 MHz (Z2 phase) and
(b) Δ ¼ 12 MHz (Z4 phase). Other parameters: Ω ¼ 4 MHz.
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density obtained by extrapolating the results from the TTN
and the aTTN at m → ∞ with previous results from different
variational Ansätze obtained by means of ordinary cluster
resources [67]. In particular, we plot the relative error obtained
by the different tensor network Ansätze and the best known
results, obtained via quantum Monte Carlo simulations [22].
Differently from the Ising model, we find the aTTN to be
more accurate than the TTN even at lower system sizes, such
as L ¼ 8, 16. Interestingly, the aTTN for L ¼ 16 obtains an
even more precise ground state energy density compared to
most of the alternative variational Ansätze at lower finite
system size of L ¼ 10, such as neural network states (NNS),
neural autoregressive quantum state, entangled plaquette
states (EPS), or PEPS [58,68–70]. We mention that, while
the PEPS is very efficient with its ability to work directly in
the thermodynamic limit in describing infinite systems as
iPEPS [71,72], the PEPS analysis for finite sizes are, for now,
limited to N ¼ 20 × 20 systems. It turns out that for this
model a very competitive variational approach is the 2D-
DMRG, which outperforms the alternative methods for finite
sizes with open or cylindrical BC up to the system size
L ¼ 12, but struggles with periodic BC and with increasing
both system sizes L≳ 12 [64]. Finally, we extended our
analysis toL ¼ 32: In this case no public result is available for
periodic BC and thus we estimated the error by extrapolating
the value of the finite size scaling of Monte Carlo simulations
[22]. In recent works, heavy parallelization over large high
performance computing systems have been exploited to study
the Heisenberg model with open BC combining the PEPS
structure with MC techniques, reaching a precision of ∼10−4
at 32 × 32 [73,74].
We point out that the here performed aTTN simulations

(as well as the TTN simulations) exploit a Uð1Þ symmetry.
However, for this model, we could further drastically
improve the performance of the aTTN by incorporating
the present SU(2) symmetry in the simulation framework
[32,78,79].
Interacting Rydberg atoms.—We now present new

physical results, on a long-range interacting system
by studying the zero-temperature phase diagram of
an interacting Rydberg atoms two-dimensional
lattice [4], described by the Hamiltonian
Hryd ¼

P
r½ðΩ=2Þσxr − Δnr þ 1

2

P
s Vðjr − sjÞnrns�, where

the Rabi frequency Ω couples the ground jgir and the
excited Ryderg state jrir and nr ¼ jrihrjr. Δ is the
detuning and Vðjr − sjÞ ¼ c6=jr − sj6 is the interaction
strength between two excited atoms placed at sites r and
s. We keep the interaction terms up to the fourth-nearest
neighbor and set the Rabi frequency Ω ¼ 4MHz, while
the interaction parameters refer to 87Rb atoms excited to
the state j70S1=2i, for which c6 ¼ 863 GHz μm6.
The interactions limit the maximum excitation density

according to the Rydberg blockade radius r�—the
minimum distance at which two atoms can be simulta-
neously excited—defined by the relation Vðr�Þ ¼ Ω. The

competition between the interactions strength and Δ
generates nontrivial phases characterized by regular spatial
excitation-density distributions. Figure 3(a) shows the
phase diagram of the system as a function of the
detuning and the nearest-neighbor interaction energy Vnn,
obtained via aTTN simulations with L ¼ 4, 8, 16, 32 with
open BC.
For low values of the detuning Δ, the system exhibits a

disordered phase characterized by the absence of excita-
tions while, increasing Δ, excitations are energetically
favored and the interactions determine their spatial arrange-
ment. In the limit of Vnn → 0, or a → ∞, the atoms are
noninteracting and the expectation value hnri → 1 for
Δ ≪ Ω. At larger values of Vnn, corresponding to
r�=

ffiffiffi
2

p
< a < r�, nearest neighbor atoms cannot be simul-

taneously excited, giving rise to the Z2 phase [4,80] with a
two-degenerate ground state with the excitations distributed
in a chess board like configuration, as shown in Fig. 3(a).
Nevertheless, the Z2 disappears at low values of Vnn and
large detuning, as all the atoms are excited (light orange,
right-bottom region of the phase diagram). The spatial
distribution of the excitations in the orderded phase is well
captured by the peaks of the static structure factor
SðkÞ ¼ ð1=N2ÞPr;s e

−ik·ðr−sÞhnrnsi. In particular, the
phase Z2 exhibits a peak in ðπ; πÞ, as shown in Fig. 3(b).
The transition from the disordered to the Z2 phase is a
second-order one, as it emerges by computing the second
derivative of the energy with respect to Δ (see
Supplemental Material [66]). In order to determine the
critical line separating the two phases we define the non-

local order parameter Oð2Þ
r ¼ ðnrx;ry − nrxþ1;ry − nrx;ryþ1 þ

nrxþ1;ryþ1Þ=4 and perform a finite-size scaling analysis of

hOð2Þ†
r Oð2Þ

r i vs Δ, where hOð2Þ†
r Oð2Þ

r i is estimated by Sðπ; πÞ
[81,82] (see Supplemental Material [66]). By further
reducing a, the blockade radius prevents diagonal-adjacent
atoms to be excited. As a consequence, each one of the Z2

ground states breaks into two different states, giving rise to
the four-degenerate phase Z4: In each one of the ground
states of this phase, each excited atom is surrounded by
atoms in their ground states [see upper inset in Fig. 3(a)].
We observe a second-order phase transition in Vnn for Δ ≃
10 MHz from the Z2 to the Z4 phase at Vc

nn ¼ 32�
2.5 MHz (or equivalently a ¼ r�=

ffiffiffi
2

p
). The static structure

factor exhibits four additional peaks in the points such as
ð0; πÞ as shown in Fig. 3(c). As in the Z2 case, a second-
order phase transition occurs between the disordered
phase to the Z4 by changing Δ at a fixed Vnn. We
determine the critical line by introducing the order para-

meter Oð4Þ
r ¼ ðnrx;ry þ inrxþ1;ry − inrx;ryþ1 − nrxþ1;ryþ1Þ=4,

defined such that the value of hOð4Þ†
r Oð4Þ

r i equals Sð0; πÞ in
the Z4 phase. Remarkably, we find that another second-
order phase transition occurs by further increasingΔ, leading
the system from the Z4 to the Z2 phase. We expect that at
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larger values of Vnn new phases would emerge and accord-
ingly, new phase transitions would occur by changing Δ.
Conclusions.—We have augmented the well-established

TTN geometry with a new Ansatz which reproduces area
law for high dimensional quantum many-body systems.
The efficiency of aTTNs allowed us to reach large sizes
(32 × 32) in the study of critical system, going beyond the
current possibilities of standard PEPS and DMRG, and
therefore set new benchmarks for future numerical simu-
lations [83]. As a first application of aTTNs, we have
characterized the phase diagram of two-dimensional
Rydberg atoms in optical tweezers, with atoms number
of the order of current and near future experiments [2].
Further applications include the study of systems which
cannot be studied via Monte Carlo simulations due to the
sign problem [31,84], such as Abelian and non-Abelian
lattice gauge theories at finite densities [24,55,85–88].
Such an application enables the study of the continuum
limit at higher dimensions, paving the way to unveil novel
insights into our understanding of the fundamental
constituents of our universe [89,90]. Finally, the aTTN
Ansatz can support known TN algorithms [28,91–96] to
investigate nonequilibrium dynamics in open and closed
high-dimensional systems, including annealing, quenches,
or controlled dynamics.
In conclusion, the aTTN Ansatz introduced here provides

a novel powerful tool for simulating quantum systems in
two or higher dimensions, which, beyond many interesting
physical applications will provide benchmark near-future
quantum simulations and computations on different plat-
forms, as we have demonstrated for Rydberg atoms in
optical tweezers.
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