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We analyze the quantum trajectory dynamics of free fermions subject to continuous monitoring. For
weak monitoring, we identify a novel dynamical regime of subextensive entanglement growth, reminiscent
of a critical phase with an emergent conformal invariance. For strong monitoring, however, the dynamics
favors a transition into a quantum Zeno-like area-law regime. Close to the critical point, we observe
logarithmic finite size corrections, indicating a Berezinskii-Kosterlitz-Thouless mechanism underlying the
transition. This uncovers an unconventional entanglement transition in an elementary, physically realistic
model for weak continuous measurements. In addition, we demonstrate that the measurement aspect in the
dynamics is crucial for whether or not a phase transition takes place.
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Introduction.—Fingerprints of the competition between
unitary and nonunitary dynamics are found in almost all
aspects of modern quantum science. The spectrum ranges
from radiative decay in driven two-level systems [1,2] to
dephasing of trapped ions and cold atoms due to laser noise
[3] or phonon-induced dissipation in electronic devices and
color centers [4,5]. Nonunitary processes crucially affect
quantum dynamics from single particles to the many-
body realm.
One fascinating example is phase transitions in the entan-

glement entropy, which have been discovered in unitary
circuit dynamics subject to local projective measurements
[6–11]. Focusing on the entanglement properties of individual
measurement trajectories jψðξÞi, where ξðtÞ is a realization of
temporal randomness encountered in quantum mechanical
measurements, a transition from an entangling evolution
obeying a volume law to a disentangled evolution governed
by an area law as a function of the measurement rate has
been identified [12–19]. A characteristic trait of these tran-
sitions is that they manifest themselves in state-dependent
observables ÔðρðξÞÞ, with ρðξÞ ¼ jψðξÞihψðξÞj. For
example, for the entanglement entropy of a subsystem A,
ÔðρðξÞÞ ¼ − log ρAðξÞ, where ρAðξÞ is the reduced density
matrix on A—a highly nonlinear function of the state ρðξÞ.
Such entanglement transitions have been reported in several
setups, including nonunitary circuit models and chains of
interacting bosons subject to continuous measurements
[20–26].
Here we focus on one of the most elementary models for

the competition between unitary and nonunitary dynamics,
free fermions on a periodic chain, subject to coherent
hopping and local monitoring of the fermion particle
number, which preserves the system’s U(1) symmetry
[27–30]. This model can be simulated efficiently on large

system sizes [27]. Moreover, it is natural in terms of
physical implementations (although this does not guarantee
straightforward observability of entanglement transitions):
this scenario arises, e.g., for ultracold fermions in optical
lattices, Rydberg atom arrays, or spin chains, where the
local particle number (or magnetization) is measured via
homodyne detection [29,30]. From a measurement theory
point of view, the nonunitary monitoring evolution results
from taking the temporal continuum limit of weak mea-
surements of the local fermion particle number, imple-
mented, for instance, by a weak, local coupling to a
projectively measured photon bath [30–33].
We report two central findings. (i) We establish the

existence of an extended, robust “weak-monitoring”
regime, for which the entanglement entropy asymptotically
grows logarithmically with the subsystem size. This pre-
viously unanticipated regime is reminiscent of a critical,
conformally invariant phase of fermions in (1þ 1) dimen-
sions. We strengthen the analogy to conformal field theory
(CFT) by examining the behavior of connected density-
density correlations and the mutual information, both
displaying clear signatures of conformal invariance.
(ii) For strong monitoring, the system undergoes a phase

transition into an area-law phase obeying disentangling
dynamics. At the critical point, which is located at a
nonzero measurement strength, finite size scaling of the
entanglement entropy provides strong indications for a
Berezinskii-Kosterlitz-Thouless (BKT) scenario underly-
ing the measurement-induced phase transition. We char-
acterize both phases in terms of the entanglement entropy,
the mutual information, and the connected density corre-
lation function, and find evidence that the conformally
invariant, weak measurement phase is left via the BKT
mechanism.
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Finally, we compare the measurement-induced dynamics
with a nonunitary circuit evolution, which neglects the
measurement backaction and violates probability conser-
vation during the dynamics. While all considered protocols
collapse onto the same Lindblad quantum master equation,
the difference surfaces, however, once state-dependent
observables are considered: Among the trajectory evolu-
tions considered here, only physical measurement proto-
cols exhibit an entanglement phase transition.
The entanglement phase diagram is displayed in Fig. 1.

We confirm that the volume law realized at γ ¼ 0 is
unstable against infinitesimal monitoring γ > 0 [25,27].
It is instead replaced by an intriguing subextensive behav-
ior, which has also been observed very recently for free
fermions with complete spatiotemporal randomness [25],
and in measurement-only protocols [34]. The opposite limit
γ−1 ¼ 0 lacks any entangling operations and is character-
ized by an area law. We find a phase transition from the
logarithmic scaling behavior, with a γ-dependent effective
central charge, to an area law at a finite γc (cf. Fig. 1),
similarly to Ref. [34], accompanied by a sudden drop of the
central charge to zero. The transition is, however, absent for

a nonunitary circuit protocol, where only the logarithmic
regime is observed.
Trajectory evolution.—We consider free fermions

on a half filled periodic chain of length L, which is
described by the nearest-neighbor hopping Hamiltonian
H ¼ P

l c
†
lþ1cl þ c†l clþ1 with fermionic creation and anni-

hilation operators c†l , cl. Furthermore, the local fermion
densities nl are continuously, weakly measured, i.e.,
monitored, by some external mechanism, yielding a non-
unitary contribution to the Hamiltonian. Generically this
includes a stochastic term ∼iξl;tnl with random events
fξl;tg, such that the time evolution of a fermion pure state
jψðfξl;tgÞi follows a stochastic trajectory.
For the major part of our analysis, we consider the

quantum state diffusion (QSD) protocol. Here, the mon-
itoring of the fermion densities is implemented via their
coupling to a set of continuous variable bath operators
[36,37]. Paradigmatic examples include the positions of
free particles (so-called pointers) [20,38] or the quadratures
of a photon environment, which can be measured via
homodyne detection to implement a QSD evolution with
cold atoms [29,30]. The wave functions in the QSD
protocol follow the evolution equation [31,36,37],

djψfξl;tgi ¼
�
−iHdtþ

X

l

�
ξl;tM̂l;t −

γ

2
M̂2

l;tdt

��
jψfξl;tgi;

ð1Þ

where M̂l;t ¼ nl − hnlit [39]. The real-valued Gaussian
noise ξl;t has zero mean ξl;t ¼ 0 and covari-
ance ξl;tξm;t0 ¼ γdtδl;mδðt − t0Þ.
For reference, we compare our results to two additional

trajectory evolution protocols. (i) The quantum jump (QJ)
evolution, which realizes a monitoring dynamics with a
discrete measurement noise [32,33,40] and displays
qualitatively similar behavior as the QSD [41]. (ii) The
continuous-time limit of a nonunitary circuit description
(QSDc) [25,41], also known as “raw” quantum state
diffusion [31,37,41], which does not correspond to any
monitoring.
Numerical procedure.—The evolution equation (1) is

quadratic in the fermion operators; thus any initial Gaussian
state jψ0i remains Gaussian under time evolution. This
enables efficient numerical simulation of Eq. (1), which is
outlined in Refs. [27,41]. The full information of the
Gaussian fermion density matrix and correlations is
encoded in the correlation matrix Dl;jðt; t0Þ ¼ hc†l;tcj;t0 i.
For a chain of length L, the von Neumann entanglement
entropy SvNðl; LÞ for a subsystem A of length l can be
obtained from the eigenvalues of the equal-time correlation
matrix of subsystem A [43,44] (see also Ref. [41]).
In what follows we initialize the system in a short-range

correlated Néel state jψ0i ¼ j010101…:01i and evolve
the different types of trajectories according to Eq. (1).

(b)

(e)

(a)

(c) (d)

FIG. 1. (a) Free fermions hopping on a chain of length L subject
to continuousmonitoring with dimensionless rate γ. (b) Schematic
“phase diagram” showing the different regimes of entanglement
scaling with L (the dashed line denotes a finite size crossover).
(c) At small monitoring rate, a subextensive growth of the entropy
∼ logðLÞ at sufficiently large L is reminiscent of a critical,
conformally invariant phase. For small γ, L, extensive growth
∼L is observed (inset), approaching a volume law as γ → 0. (d),
(e) The effective central charge and residual entropy obtained by
fitting the data to Eq. (2). The blue lines in (d) and (e) correspond
to the nonunitary circuit evolution (QSDc), for which the
transition is absent. The insets show the same data on a linear
(d) and logarithmic (e) scale [35].
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The entanglement entropy, mutual information, and corre-
lation functions are computed for each individual trajectory
after the evolution has reached a steady state, γt ≫ 1 [41].
We denote the trajectory average of an observable O by Ō.
The linear average D̄ ¼ 1

2
1 corresponds to an infinite

temperature state for any γ > 0 and is independent of
the trajectory evolution. For a nonlinear function of the
correlation matrix fðDÞ, however, generally fðDÞ ≠ fðDÞ,
and therefore ¯SvNðl; LÞ cannot be obtained from the linear
average D̄.
Entanglement phase transition.—For a bipartition of the

chain into two equal subsystems, the steady-state entangle-
ment entropy SvNðL=2; LÞ shows three different functional
dependencies on the chain length L and the monitoring rate
γ, as illustrated in Fig. 1(c) (see Ref. [41] for QJ). For the
coherent time evolution at γ ¼ 0, an initial Néel state
develops an extensive entanglement entropy converging to
a volume law [44]. This behavior transcends as a finite size
effect to weak but nonzero monitoring, where an extensive
entanglement growth SvNðL=2; LÞ ∼ L is observed for
L < LcðγÞ ∼ expð ffiffiffiffiffiffiffiffiffi

γ0=γ
p Þ smaller than a γ-dependent cut-

off length [see, e.g., inset of Fig. 1(c)].
For any nonzero monitoring rate 0 < γ < γc, and below

a critical rate γc, the entanglement in the thermodynamic
limit follows a subextensive growth S ∼ logL. This is
characteristic for (1þ 1)-dimensional CFTs [45,46].
Here, we describe this growth according to a CFT with
periodic boundaries,

SvNðl; LÞ ¼
cðγÞ
3

log2

�
L
π
sin

�
πl
L

��
þ s0ðγÞ; ð2Þ

but with a γ-dependent effective central charge cðγÞ and
residual entropy s0ðγÞ; see Figs. 1(d) and 1(e). Irrational or
continuous central charges are established in CFTs for
disordered or percolation problems [7,47–50] and have
been recently reported for entanglement transitions as well
[7,17,24,25,34]. An extended regime of logarithmic scaling
of SvNðl; LÞ was observed recently for a free, nonunitary
circuit dynamics with spatiotemporal randomness [22].
Here, we establish an extended phase of measurement-
induced conformal invariance for free fermions on a regular
lattice.
A major finding of our work is the existence of a phase

transition at a critical monitoring rate γc, above which
conformal invariance is lost and the entanglement entropy
obeys an area law. This transition is well illustrated in the
behavior of the effective central charge cðγÞ. For weak
monitoring, cðγÞ ∼ γ−1 decays algebraically and saturates
at a nonzero value for L → ∞. At stronger monitoring, the
effective central charge, and therefore the logarithmic
scaling, vanish above a critical value γc in the limit
L → ∞. For any finite size L < ∞, cðγÞ approaches zero
according to an exponential log cðγÞ ∼ −jγ − γcðLÞj−αðLÞ

for some αðLÞ > 0 [see Fig. 3(c)]. The phase transition is
evidenced by a set of different, unambiguous observations:
(i) a qualitative change in the entanglement entropy, which
no longer shows any subsystem dependence for γ ≥ γcðLÞ
[γcðL ¼ 800Þ ≈ 0.8 in Fig. 3(a)], (ii) the behavior of the
effective central charge with γ in Fig. 1(d), as well as with
the system size L in Fig. 3(c), which drops to zero for
γ > γc and L → ∞, (iii) the zero crossing of the residual
entropy s0ðγÞ in Fig. 1(e), which is required for a well-
defined, positive entanglement entropy when c → 0, and

(d)(b)

(c)

(a)

FIG. 2. The conformal invariance at weak monitoring is
confirmed (a) by a large, nonzero mutual information
lA ¼ lB ¼ L=2, which rapidly decays to zero in the area-law
regime, and (b) by a scaling collapse of the mutual information as
a function of the cross ratio η, i.e., IðηÞ ∼ η (L ¼ 400). (c) In the
area-law regime no collapse is observed. (d) Equal-time corre-
lations C̄ðl; 0Þ decay algebraically ∼l−2 (exponentially) with the
distance l in the conformally invariant (area-law) regime
(L ¼ 800). The inset shows a data collapse for different system
sizes L ¼ 200, 400, 600, 800 (axes range as in main plot).

FIG. 3. (a) The entanglement entropy as a function of the
bipartition size l reveals a clear, asymptotic logarithmic growth
for weak monitoring and shows a transition to an area law for
stronger monitoring γ ≥ γc (inset). (b) Finite size scaling collapse
of the entanglement entropy, assuming BKT scaling of the
correlation length and γc ¼ 0.31 (the inset shows the unrescaled
data). (c) Finite size scaling of the effective central charge,
predicting a jump of cðγÞ from cðγc − 0þÞ ≈ 2=γc to cðγc þ
0þÞ ¼ 0 in the limit L → ∞ (dotted lines are guides to the eye).
The parameters are α ¼ 3.99, γc ¼ 0.21, gðLÞ ¼ f1þ
1=½2 logðLÞ − 4.37�g−1, and the legend from (b) applies in (c).
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(iv) qualitative changes of the mutual information and the
correlation function, shown in Fig. 2 and discussed next.
Mutual information.—The mutual information IðlA; lBÞ

between two disjoint subsystems A¼½m1;m2�, B ¼ ½m3; m4�
of length lA, lB has emerged as a useful indicator to
locate an entanglement transition [17]. It is given by
IðlA;lBÞ¼SvNðlA;LÞþSvNðlB;LÞ−SvNðA∪B;LÞ, where
SvNðA ∪ B;LÞ is the entanglement entropy of the subsystem
A ∪ B. IðlA; lBÞ measures the amount of information that
can be gained about subsystem A from subsystemB and vice
versa, and it is also an upper bound for connected correlation
functions between A and B [51]. For two disjoint intervals
lA ¼ lB ¼ L=8, with centers at a distance rAB ¼ L=2, it is
expected to show a sharp peak at the critical point separating
the area- and the volume-law phase [17]. Inspecting IðlA ¼
lB ¼ L=8; rAB ¼ L=2Þ for different system sizes in Fig. 2(a)
shows that it is significantly larger than zero in the entire
critical regime and approaches zero rapidly in the area-law
phase, reflecting extended criticality. A similar peak is
observed for the QJ evolution [41].
For variable subsystem sizes, it is useful to

define the cross ratio η ¼ m12m34=m13m24 with mαβ ¼
sinðπjmα −mβj=LÞ. In the conformally invariant regime,
the mutual information IðηÞ collapses onto a single line for
all η, with a linear increase ∼η for small cross ratios; see
Fig. 2(b). The linear dependence in η also implies a power-
law decay of the mutual information I ∼ r−2AB for small
subsystems with large separation [17]. This collapse is a
strong signature of conformal invariance and can be
observed throughout the entire logarithmic regime. It can
be contrasted with the behavior in the area-law phase,
shown in Fig. 2(c), where no collapse is observed.
Correlation function.—In addition, we detect signatures

of conformal invariance in connected correlation functions,

Cðl;τÞ≡ jDlþj;jðtþ τ; tÞj2¼hnlþj;tþτihnj;ti− hnlþj;tþτnj;ti;

which is the Fock (exchange) contribution to the density-
density correlation in a Gaussian state. Cðl; τÞ is a second
moment of the correlation matrix D, and thus its trajectory
average does not correspond to an infinite tempera-
ture state.
The equal-time correlation functions C̄ðl; 0Þ in Fig. 2(d)

quantitatively reflect the phase diagram in Fig. 1(b). In the
conformally invariant regime, an algebraic decay of the
correlation function with the square of the distance
∼½sinðπl=LÞ�−2 is observed. The collapse of the correlation
functions for variable system sizes in the inset of Fig. 2(d)
demonstrates that this ∼½sinðπl=LÞ�−2 scaling is observed in
the thermodynamic limit L → ∞. On distances l < LcðγÞ
(for volume law) or in the area-law regime, the correlations
deviate significantly from the ∼l−2 behavior, showing
longer-ranged or short-ranged correlations, respectively.
BKT transition and critical point.—In unitary quantum

dynamics, the scenario of a phase transition from an

extended conformally invariant phase to an area-law phase
via the generation of a scale in (1þ 1) dimensions is an
unambiguous and exclusive feature of the BKT mechanism
[52]. The measurement-induced phase transition reported
here displays several similarities to this phenomenology,
including the sudden drop of the effective central charge
[and of the mutual information, Fig. 2(a) inset] and the loss
of conformality, accompanied by the emergence of a length
scale ξ in the correlation functions Cðl; 0Þ ∼ expð−l=ξÞ
[Figs. 2(b) and 2(c)].
Inspired by this similarity, we perform a finite size

scaling analysis of the entanglement entropy and the
effective central charge cðγÞ, for which we assume a
BKT-type correlation length ξ ∼ expð−α= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijγ − γcj

p Þ.
Here jγ − γcj is the distance from the measurement-
induced critical point. For the entanglement entropy, this
yields the scaling form SvNðγ; L=2Þ − SvNðγc; L=2Þ ¼
F½ðγ − γcÞ logðLÞ2� [53,54] with a scaling function F.
We observe a convincing collapse for a range of critical
rates γc, with the best fit γc ¼ 0.31 being displayed in
Fig. 3(b).
The central charge is expected to be zero for γ > γc and

to display a sudden jump at γ ¼ γc in the limit L → ∞,
analogous to the quantum phase transition in equilibrium.
Observables undergoing such a sudden jump at the critical
point are well described by a scaling function F̃ðXÞ with
argument X ¼ logðLÞ − α=

ffiffiffiffiffiffiffiffiffiffiffiffi
γ − γc

p
[55]. The scaling col-

lapse is shown in Fig. 3(c) for the product γcðγÞ. It covers
two limits: (i) the case γ > γc and L → ∞ corresponds to
X → ∞ and therefore cðγÞ ¼ 0, (ii) the case L < ∞
and γ → γc corresponds to X → −∞ and roughly
limX→−∞ γcðγÞ → 2, according to Fig. 3(c). Overall it
predicts a jump of the effective central charge at γ ¼ γc
and a critical value cðγcÞ ¼ 2=γc.
The finite size collapse and the scaling behavior of the

central charge work well for a range of critical couplings
γc ∈ ½0.20.35� with the best results obtained for γc ¼ 0.31.
Without additional analytical constraints (such as, e.g., an
analog of the Nelson-Kosterlitz criterion [56]), the precise
location of the critical point is, however, still hard to
determine more accurately. This is a general problem of
phase transitions with slowly diverging length scales.
Nevertheless, Fig. 3 provides strong indications for a phase
transition of the BKT universality class. The observation of
an entanglement transition from a logarithmic to area-law
regime modifies the conclusion of earlier work on free
fermions, which ruled out a volume-law phase under
monitoring and concluded an area law for any γ > 0 [27].
Importance of true measurements.—We compare three

different evolution protocols, two of which correspond to a
physical measurement dynamics (QSD and QJ) and one to
a nonunitary circuit evolution (QSDc) without measure-
ment backaction. All three yield qualitatively similar results
in the conformally invariant regime, γ ≤ γc [see Fig. 1(d)
for QSDc and Ref. [41] for QJ]. However, only the physical
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measurement protocols exhibit a transition toward an area-
law phase at larger monitoring rates γ ≥ γc. The QSDc
indicates no area-law transition; instead the conformal
invariance is extended to arbitrary γ > 0. This behavior
is rooted in the absence of measurement dark states in the
QSDc evolution.
In the absence of the Hamiltonian, both QSD and QJ

display a set of measurement dark states fjψDig, i.e.,
eigenstates of all measurement operators nljψDi ¼ λljψDi.
For instance, in the QSD evolution M̂l;tjψDi ¼ 0, and
therefore jψDi is an attractor of the dynamics in the strong
monitoring limit γ ≫ J. This reflects the tendency of a
repeatedly measured system to eventually collapse into
eigenstates of the measured operators. For continuous
measurements, this collapse requires a measurement back-
action, which is absent in the QSDc evolution. In this case,
higher moments of the correlation matrix D will show a
significant deviation from a physical measurement
dynamics, for instance, in the norm of the state and the
entanglement entropy [41]. A significant difference arises
also in the distribution function of higher moments. The
distribution function for the trajectory entanglement
entropy, for instance, undergoes a qualitative change at
the phase transition in the QSD evolution, while it remains
unmodified for the QSDc evolution [41].
Discussion and conclusion.—A natural model of con-

tinuously monitored, free fermions can realize an entangle-
ment phase transition with strong indications of BKT
universality. Instead of interpolating between volume-
and area-law behavior, the transition connects a “gapless”
phase with conformal invariance and a logarithmic scaling
of the entanglement entropy to an area law. Beyond
exhibiting the characteristic phenomenology of entangle-
ment transitions, it manifests in the behavior of connected
correlations functions of the continuously monitored
observables. We show that this entanglement transition
also appears in a free-fermion dynamics with spatiotem-
poral disorder [41], which demonstrates that the entangle-
ment scenario drawn for this model is not peculiar to an
integrable tight-binding Hamiltonian.
Our results open intriguing lines for future research: The

simplicity of the model and the connections to CFT and the
Kosterlitz-Thouless scenario of an extensive critical regime
[52], cut off at a critical monitoring rate γc, spark the hope
to understand the transition and its variants observed in
unitary circuit models of free fermions [57] and in a Dirac
field theory [58] more deeply, and to find a way toward
experimental detectability.
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