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Masking of quantum information spreads it over nonlocal correlations and hides it from the subsystems.
It is known that no operation can simultaneously mask all pure states [Phys. Rev. Lett. 120, 230501
(2018)], so in what sense is quantum information masking useful? Here, we extend the definition of
quantum information masking to general mixed states, and show that the resource of maskable quantum
states is far more abundant than the no-go theorem seemingly suggests. Geometrically, the simultaneously
maskable states lays on hyperdisks in the state hypersphere, and strictly contains the broadcastable states.We
devise a photonic quantum information masking machine using time-correlated photons to experimentally
investigate the properties of qubit masking, and demonstrate the transfer of quantum information into
bipartite correlations and its faithful retrieval. The versatile masking machine has decent extensibility, and
may be applicable to quantum secret sharing and fault-tolerant quantum communication. Our results provide
some insights on the comprehension and potential application of quantum information masking.
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Introduction.—The distinctive nonclassicality of quan-
tum mechanics establishes the pronounced discrepancy
between quantum and classical information [1].
Especially, the celebrated quantum nonlocality [2] alludes
to the possibility of spreading information over the non-
local correlation and hiding it from observers who only
have access to some subsystems, namely, quantum infor-
mation masking (QIM) [3]. However, the postulates of
unitarity and linearity [4] of quantum theory impose severe
limitations on QIM. In the seminal work [3], unconditioned
masking of all quantum states is deemed impossible. This
assertion establishes a novel no-go theorem to paraphrase
its conspicuous precedents like the interdicts against
universal cloning [5], broadcasting [6,7], deleting [8,9],
and hiding [10] of an unknown state.
Despite the handicap of universal implementation, QIM

admits state dependent [11] and probabilistic realization
[12,13], which is similar to other conditional quantum
information tasks [14,15]. Extrapolations of masking into
multipartite [16], multilevel [17], scenarios and channel
states [18] have been proposed. QIM shows profound
affiliation with quantum state discrimination [19], qubit
commitment [20,21], secret sharing [22], and fundamental
principles like information conservation [23]. Although
significant progress has sprouted regarding QIM, its

capability ultimately depends on the scale of a maskable
set, which is not yet determined. Moreover, given its
intrinsically nonlocal feature, QIM on flying quanta has
exceptional prospects of application in quantum commu-
nication. However, to our best knowledge, QIM has not
been demonstrated in photonic experiments.
The purpose of this Letter is twofold. We first provide a

geometric description of QIM and prove the “disk con-
jecture” [3]—that the maskable qudit states corresponding
to any masker belong to some hyperdisks in the state
hypersphere. This shows the copiousness of the maskable
states, and allows us to identify the inclusion of the
broadcastable states within it. Next, we devise a photonic
masking machine capable of masking any disk in the qubit
Bloch sphere, and give the recipe for qudit state masking.
Assisted by the versatility of the machine, we experimen-
tally confirm the geometric property of the maximally
maskable set [11,24], and discuss the practical aspects of
photonic QIM. Our results provide a systematic method for
experimental studies of QIM, shed some lights on its
applications as a novel quantum information processing
protocol, and the connection between quantum information
and nonlocality.
Geometric characterization of QIM.—We start from the

formal definition of QIM for general quantum states.
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A qudit “masker” U is a linear isometry mapping a density
matrix ρAs to a two-qudit state ρABs :

ρAs → ρABs ¼ UρAs ⊗ j0ih0jU†; s ∈ f1; 2;…g; ð1Þ

where j0ih0j represents a blank state. We say that U
“masks” the quantum information contained in a set Ω
of density matrices fρAs ∈ Ωg if for all s, the marginal states
of ρABs for the two parties are, respectively, identical [3].
To construct a geometric representation of a quantum

state, we span a qudit state on the SUðdÞ basis fΛigd2−1i¼1 .
Explicitly, ρ ¼ Id=dþP

d2−1
i¼1 xiΛi=2 with

P
d2−1
i¼1 x2i ≤ r2d,

where xi represents the coefficients, and rd is determined
by the dimension d [25,26]. Consequently, every qudit state
corresponds to a unique point in a hypersphere, which is
analogous to the Bloch sphere for qubits. Based on this
representation, we directly compare the coefficients of the
local states after masking to bound the maskable sets, and
use the impossibility of universal masking [3] to prove the
following result:
Theorem 1.—The maskable set corresponds to any linear

qudit isometry lays on some hyperdisk D.
The above Theorem first appears in Ref. [3] as a

conjecture, and its proof goes to Sec. IB of the
Supplemental Material [27]. Because the Euclidean dimen-
sion of a hyperdisk is smaller than a hypersphere by only 1,
Theorem 1 shows the possibility of masking a large class of
quantum states and the potential of QIM in quantum
information tasks. It also inspires us to identify the relation-
ship between the sets of broadcastable and maskable
quantum states. Specifically, because noncommuting mixed
states cannot be broadcast [6], and commuting mixed states
are simultaneously maskable (cf. Supplemental Material
[27], Sec. IC), we have
Theorem 2.—Any qudit broadcastable set is a proper

subset of some qudit maskable sets. Moreover, the qudit
maskable set can have nonzero measure in d-dimensional
Euclidean space.
The implication of our results can be clearly visualized in

the qubit case using the Bloch sphere representation.
For simplicity, we interchangeably denote a state ρ ¼
ðI2 þ xσx þ yσy þ zσzÞ=2 using its SU(2) expansion
ρ ≔ ðx; y; zÞ. A qubit disk containing the reference state
ρ0 ¼ ðx0; y0; z0Þ can be expressed in a parametric form:

Dθ
αðρ0Þ ¼ fρ∶x sin α cos θ þ y sin α sin θ þ z cos α ¼ cg;

ð2Þ

with c ¼ x0 sin α cos θ þ y0 sin α sin θ þ z0 cos α; α ∈
½0; π� and θ ∈ ½0; 2π�. In comparison, the geometric form of
the broadcastable set is a line segment through the center of
the Bloch sphere, so the dimensions of the disk and line
segment conforms Theorem 2, and the resource in the
maskable set is far more abundant than the broadcastable
set. Notably, the qubit isometry Uθ

α capable of masking the

disk Dθ
αðρ0Þ always exists (cf. Supplemental Material [27],

Sec. IB), and can be devised and reliably implemented on
the photonic architecture, as will be elucidated in the
following section.
A photonic masking machine.—The polarization degree

of freedom of the photons is a natural courier of qubit
information. Specifically, the correspondences jHi ↔
j0i; jVi ↔ j1i link the isomorphic Hilbert spaces of a
photon’s polarization state and a qubit state, with jHi and
jVi denoting the horizontal and vertical polarization of the
photon, respectively. We exploit the photon fusion gate [29]
to construct a class of maskers U0

0, which is further
promoted to arbitrary parameters Uθ

α using additional wave
plates.
The quantum circuit of the maskingmachine is illustrated

in Fig. 1(a). The photon fusion gate performs a two-photon
interference on a polarizing beam splitter (PBS), and is
conditioned on two-photon coincidence detection at two
different output ports. This effectively casts an entangling
projector jHHihHHj − jVVihVVj onto the input photons
[30]. Given an auxiliary photon initialized in the
jDi ¼ ðjHi þ jViÞ= ffiffiffi

2
p

, the behavior of the fusion gate
on the target photon is equivalent to the masking isometry
U0
0 up to a renormalization (cf. Supplemental Material [27],

Sec. IIA).More explicitly, applying the fusiongate on aqubit
state jψi ¼ cos δjHi þ sin δeiϕjVi yields jψi ⊗ jDi →
cos δjHHi − sin δeiϕjVVi. Because the phase factor ϕ
does not appear in either of the marginal states, all the
states with the same δ can be masked, and they fall on the
disk D0

0 ¼ fρ∶z ¼ cos δg.
Using this photonic masking machine, an agent (Alice)

can conceal some quantum information into the bipartite
correlation between her photons and the ones held by
another agent (Bob). The experimental setup is illustrated
in Fig. 1(b). An ultraviolet laser with a central wavelength

(a)

(b)

FIG. 1. Photonic qubit masking machine. (a) The quantum
circuit of the masking machine. Rθ

α and H represent an arbitrary
SU(2) rotation and the Hadamard gate, respectively. The tilde line
in the rounded rectangle denotes the photon fusion gate, with the
detailed implementation using the polarizing beam splitter
illustrated in the right subpanel. (b) Experimental configuration.
See the main text for details.
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of 400 nm is used to pump a type-II phase-matched
β-barium borate (BBO) crystal to generate photon pairs
in product polarization states via the spontaneous para-
metric down-conversion process. The photon pairs are
collected by two single-mode fibers (SMFs), with one of
the photons sent to Alice for initial state preparation using a
half-wave plate (HWP) and a quarter-wave plate (QWP),
and the other photon directly fed into the masking machine,
where its polarization is rotated to jDi.
Subsequent to initial state preparation, Alice inputs her

photon to the masking machine, which first undergoes a
polarization rotation induced by a HWP sandwiched by two
QWPs. This rotation maps the arbitrary disk to be masked
to a latitudinal plane in the Bloch sphere [31]. The two
photons are then interfered on a PBS, with their trajectory
and arrival time carefully aligned to ensure the proper
overlapping of the spatial and temporal wave functions.
The output photon from one port is kept by Alice, and the
other is sent to Bob. The polarization states of the photons
are later analyzed by a PBS preceded by a QWP and a
HWP. Finally, the photons are again collected by two SMFs
and sent to single-photon avalanche detectors for coinci-
dence counting.
To exemplify the aptitude of the masking machine, we

experimentally realize Uπ=4
ϑ and mask the disk Dπ=4

ϑ ðρ1Þ,
with ϑ ¼ arctan

ffiffiffi
2

p
. The disk passes through ρ1 ¼

jHihHj ¼ ð0; 0; 1Þ; ρ2 ¼ jDihDj ¼ ð1; 0; 0Þ, and ρ3 ¼
jLihLj ¼ ð0; 1; 0Þ with jLi ¼ ðjHi þ ijViÞ= ffiffiffi

2
p

. The form
of Uπ=4

ϑ requires the orientation of the three cascaded wave
plates in the masking machine set to 58.18°; 0°, and 64.66°.
The masker is also applicable for the other states on the
disk, and here we test the cases of the pure state ρ4 ¼
ð2=3; 2=3;−1=3Þ and the mixed state ρ5 ¼ ð1=2; 1=2; 0Þ,
with the latter prepared using the temporal-mixing
technique [32].
The experimental initial states in a Bloch sphere (blue

dots) are shown in Fig. 2(a). To retrieve the masked
information, we numerically apply the inverse isometry
U−1 on the reconstructed bipartite density matrix. The final
state is also shown in Fig. 2(a) (orange dots) for compari-
son. The reconstruction achieved a mean fidelity of
99.87%, and the average total absolute spectra error is
3.72 × 10−2. The effect of masking can be further reflected
by the marginal states of Alice and Bob. See Fig. 2(b), they
almost completely overlap, with the average trace distance
Tðρi; ρjÞ ¼ 1

2
kρi − ρjk1 [33] of Alice’s and Bob’s marginal

states being 1.55 × 10−2 and 4.06 × 10−2, respectively. On
the other hand, joint measurements on two photons show
that the average fidelity of the masking-resulted states with
respect to the theoretical predictions is 97.70%. Two
instances of reconstructed bipartite density matrices are
shown in Figs. 2(c) and 2(d), in accord with their theoretical
values. Overall, the quantum information has almost
completely retreated from the local marginal states, and
is faithfully kept in the bipartite correlation.

Furthermore, we observe the zero Haar measure of the
maskable set, that is, the thickness of the maskable disk is
infinitesimal. We verify this property on the masker U0

0,
realized by setting the orientations of all the three wave
plates in the masking machine to 0°. The corresponding
maskable disks are every latitudinal plane on the Bloch
sphere. Experimentally, the reference states ψ0 ¼
sinðϕ=2ÞjHi þ cosðϕ=2ÞjVi on latitude ϕ, with ϕ setting
to 0°,30°, and 60°, are selected. We then prepare some states
shifted from ψ0 along a parallel or a meridian, cast U0

0, and
take tomography on these states. The marginal states of
Bob, ρB, are obtained from the reconstructed bipartite
density matrices, and compared with the theoretical value,
ρB0 ¼ TrAðU0

0jψ0ihψ0j ⊗ j0ih0jU0†
0 Þ to determine the result

of masking. Our results in Fig. 3 shows that when the shift
is along a parallel, ρB remains invariant, which can be
revealed by the vanishing TðρB; ρB0 Þ. Consequently, the
state still belongs to the maskable set. However, a shift
along a meridian always induces nonzero TðρB; ρB0 Þ regard-
less of ϕ, indicating failure of qubit masking because extra
information is transmitted to the marginal state of Bob. We
note that the residual error in the longitudinal data is mainly
due to the imperfect overlapping of the two-photon wave
function on the PBS, which is caused by the spectral
difference between the two type-II parametric photons [34].

(a)

(c)

(b)

(d)

FIG. 2. Masking of a qubit disk. (a) The maskable disk is the
intersection of the plane xþ yþ z ¼ 1 and the unit ball. Pure
states ρ1 ∼ ρ4 and mixed state ρ5 fall on the disk. The blue and
orange points denote the initial states deduced from quantum
state tomography and the reconstructed final states, respectively.
The inset shows a projection of these states on the maskable
disk, and the axes are defined as n̂1 ¼ ð−x̂þ ŷÞ= ffiffiffi

2
p

and
n̂2 ¼ ð−x̂ − ŷþ 2ẑÞ= ffiffiffi

6
p

. (b) Experimentally determined mar-
ginal states after masking, and the trace distance from their
theoretical values. (c) and (d) The density matrix of the bipartite
state resulted from masking ρ1 and ρ4. Solid and dashed bars
denote the experimental values and theoretical predictions,
respectively.
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Discussion.—Our photonic masking machine is based on
the qubit photon fusion gate, but the adopted method here is
also capable of masking qudit states. To this end, we can
encode each digit of the qudit on a qubit, akin to the
practice in the quantum factoring algorithm [35,36], and
mask every qubit independently. A rigorous account for
the qudit state masking is deferred to Sec. IIB of the
Supplemental Material [27]. Moreover, because the fusion
gate only requires time-correlated photons, the masking
machine will work for not only the parametric photon
pairs, but also for paused weak coherent light as one input
mode, providing the other input mode is genuine single
photon with the same wavelength and repetition rate
(cf. Supplemental Material [27], Sec. IIC). These features
suggest that QIM may be useful in bright single-photon
source-based quantum information processing tasks.
QIM has some practical merits in addition to the theo-

retical significance. As a proof-of-concept application, we
utilize the infinitely many d-dimensional maskable sets
to experimentally demonstrate quantum secret sharing
[22,37–40]. As is shown in Fig. 4(a), Alice masks a quantum
state using the masking machine tuned to three different
maskers UðiÞ, and sends each resulting qubit to a recipient,
Bobi, respectively. The Bobs can only use their marginal
state to restrict the masked state onto a disk, and have to
cooperate together and comparing their results to reveal the
concealed information: upon comparison, the three disks
will intersect at a single point in the Bloch sphere. We
explain the experimental details, the security of the secret
sharing, and its application in image reconstruction in
Sec. IID of the Supplemental Material [27]. Owing to the

geometric representation of the maskable set, our scheme
does not rely on entanglement between the recipients and
suffer from decoherence. It also works smoothly for the
mixed state. Moreover, it requires no Pauli-type correction at
the receiver’s side, thus is applicable even when the sender
has no access to classical communication after masking.
The quantum information processing protocols based on

QIM also have intimate connection with fault tolerance.
Because the quantum information is transferred to the
nonlocal correlation after masking, it acquires additional
resilience to some common-mode noise. An example is
shown in Fig. 4(b). Suppose we are given access to two
identical, noisy quantum channels, which will apply a
random phase error e−iσzt on the input state. To correctly
transmit a qubit state, we can mask it with U0

0, and apply σx
on the auxiliary qubit before sending the two qubits
through the channel. After the transmission, the original
quantum state can be recovered by applying σx again on the
auxiliary qubit and using the inverse isometry U0†

0 . Since
the protocol resembles the celebrated spin echo effect (with
the noise applied simultaneously on two quanta), it is
plausible to expect that it will find further applications in
the near future.
Going beyond the no-go theorem, we have provided both

the geometric properties of QIM, and the recipe for
implementing QIM on photonic architectures. We have
demonstrated QIM on our photonic qubit masking machine
to meticulously test the theoretical predictions, and show
that quantum information can be concealed in and restored
from nonlocal correlations. The masking machine is
extensible, versatile, and applicable in tasks like quantum
secret sharing and quantum communication. This work
deepens our comprehension of the tie between QIM and the

(a)

(b)

FIG. 4. Application of QIM. (a) Sharing of a secret state among
multiple recipients. Alice masks a secret quantum state ρ using
three maskers U i, and send one resulting marginal state to Bobi,
respectively. From the information of the marginal states and the
masker informed by Alice, every Bob independently interprets
the possible disk that contains the masked states. The original
state is pinned at the intersection of the three disks. (b) Protecting
quantum information in a noisy channel. Given only access to the
quantum channels with phase errors exp ð−iσztÞ, a qubit can still
be correctly transmitted using QIM based on the masker U0

0.

FIG. 3. Zero measure of maskable sets. The maskable disks are
encircled by the line of constant latitudes ϕ on the Bloch sphere.
Each plot shows the trace distance of Bob’s marginal density
matrices from the reference state, when Alice slightly shifts the
initial state away from a reference point on different latitudes. The
cases of displacement along a parallel or a meridian on the Bloch
sphere are plotted, respectively, in green and cyan points
(experimental data) and curves (theoretical values). The error
bars correspond to the 1σ standard deviation, deduced from a
Poissonian counting statistics.
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basic axioms of the quantum nature, and sheds lights on its
future applications in quantum information processing.
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