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The quantum state overlap is the textbook measure of the difference between two quantum states. Yet, it
is inadequate to compare the complex configurations of many-body systems. The problem is inherited by
the widely employed quantum state fidelity and related distances. We introduce the weighted distances, a
new class of information-theoretic measures that overcome these limitations. They quantify how hard it is
to discriminate between two quantum states of many particles, factoring in the structure of the required
measurement apparatus. Therefore, they can be used to evaluate both the theoretical and the experimental
performances of complex quantum devices. We also show that the newly defined “weighted Bures length”
between the input and output states of a quantum process is a lower bound to the experimental cost of the
transformation. The result uncovers an exact quantum limit to our ability to convert physical resources into
computational ones.
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Introduction.—Quantum particles are the building
blocks of light and matter, but they can display very
complex configurations. An important goal of quantum
theory is to describe their differences with simple metrics.
The state overlap jhijjij is the standard proxy to compare
two wave functions jii, jji, and it has a compelling
statistical meaning: it quantifies how hard it is to discrimi-
nate two pure states via a single quantum measurement [1].
The overlap is instrumental to build the Fubini-Study
distance cos−1 jhijjij [2,3], which evaluates the distinguish-
ability of two quantum states in terms of how far they are in
the system Hilbert space.
Unfortunately, the state overlap is not fully adequate to

compare many-body wave functions. Very similar states
can be flagged as maximally different. For example, there is
zero overlap between the N-qubit states j0i⊗N , j0i⊗N−1j1i,
for arbitrarily large N. Moreover, geometrically close states
can have very different properties. Transforming j0i⊗N into
the entangled Greenberger-Horne-Zeilinger (GHZ) state
aj0i⊗N þ bj1i⊗N , jaj, jbj ≠ 0, 1 takes experimental resour-
ces that grow with the system size [4], e.g., OðNÞ
operations in gate-based quantum computers [5], however
big their overlap jaj may be.
The same issues plague the generalizations of the state

overlap that quantify the difference between two mixed
states ρ and σ, e.g., the quantum fidelity Fðρ; σÞ ¼
Trjρ1=2σ1=2j1 [6,7] and related distances [8]. This fact is
troublesome. As we expect to steadily up-size quantum
technologies, we need trustworthy tools to evaluate the
performances of large noisy quantum machines [9].
Reconstructing the fidelity between, say, the target and

the output states of a computation is often the only way to
certify that a device is truly quantum without accessing its
inner workings [10–13].
In this Letter, we introduce the weighted distances, a

class of measures for comparing many particle states. A
standard, overlap-based distance quantifies the ability to
discriminate two states of a system via a single optimal
measurement. Here, we consider a more general scenario.
Cooperating observers independently monitor different
subsystems, evaluating the difference between two prepa-
rations of the assigned subsystem by a standard distance.
We construct a weighted sum of these distances, such that
the importance of each observer contribution is inversely
proportional to the size of the assigned subsystem. Since
the difficulty of performing measurements is arguably
related to the size of the required apparatuses, these
quantities weight each contribution in terms of how easy
is it to experimentally implement the related measurement.
We define a weighted distance as the maximum over all
these kinds of weighted sums. The weighted distances
satisfy a set of desirable mathematical properties, certifying
that they are robust information measures. We perform
explicit calculations of interesting case studies, showing
that the newly defined weighted Bures length is more
informative than the related standard Bures length [14,15].
For example, if a large measurement apparatus is needed to
discriminate between two states, their weighted distance is
short, because it is experimentally difficult to distinguish
one state from the other.
Then, we show that the weighted Bures length between

the input and output states of a quantum process is a lower
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bound to the physical resources that are needed to imple-
ment the transformation. That is, the ability to discriminate
two quantum states is never greater than the experimental
cost of transforming one state into the other. The result is
surprising: state distinguishability and state transformation
are considered “quite different” tasks [16]. We demonstrate
that they are related. Previous works established the
minimum time and energy time (“action”) to perform state
transformations [17–22]. The input-output weighted Bures
length is a lower bound to a newly defined index, which
factors the required energy, time, and size of gates for
quantum state preparation. While proving the optimality of
quantum algorithms is notoriously hard [23], the result
highlights a fundamental quantitative limit to quantum
information processing. The bound is also valid for mixed
states and nonunitary state transformations. Hence, it
applies to realistic, noisy quantum dynamics.
Definition and justification of weighted distances.—Let

us call ρN and σN two arbitrary density matrices that
represent different preparations of an N-particle quantum
system. It is well known that full reconstruction of quantum
states is a daunting task [24]. It is therefore interesting
to build an information measure that captures the difficulty
to discriminate between the two states with a single
measurement. Suppose one can perform all possible
positive operator-valued measures on the system: M ¼
fMi ≥ 0;

P
iMi ¼ INg [5]. The ability to distinguish

between ρN and σN is customarily quantified via maximi-
zation of a certain classical statistical distance dcl for
probability distributions [8],

dðρN; σNÞ ≔ max
M

X
i

dclðTrfMiρNg;TrfMiσNgÞ

≔
X
i

dclðTrfM̃iρNg;TrfM̃iσNgÞ; ð1Þ

in which M̃ ¼ fM̃ig is the most informative measure-
ment. Given three arbitrary density matrices ρN , σN , and τN ,
we assume that the quantity meets the following criteria:

dðρN; σNÞ ≥ 0ðnon-negativityÞ;
dðρN; σNÞ ¼ 0 ⇔ ρN ¼ σN ðfaithfulnessÞ;
dðρN; σNÞ ≥ dðΛðρNÞ;ΛðσNÞÞ; ∀ Λ ðcontractivityÞ;
dðρN; σNÞ ≤ dðρN; τNÞ þ dðτN; σNÞ ðtriangle inequalityÞ;

ð2Þ

in which Λ is a completely positive trace-preserving
(CPTP) map, the most general kind of quantum
operation [5]. The distance is normalized such that
it takes the maximal value Md for orthogonal states
dðρN; σNÞ ¼ Md ⇔ TrfρNσNg ¼ 0. Indeed, these states
can be discriminated with certainty. Contractivity under
CPTP maps implies that the distance is nonincreasing

under partial trace, dðρN; σNÞ ≥ dðρk; σkÞ, in which ρk
and σk are the states of a k < N-particle subset. The ability
to extract information from quantum systems depends on
the size of the measurement setup. However, the distance
function is not explicitly dependent on the number of
particles N, nor the size of the optimal measurement
apparatus M̃. Indeed, there are, in general, several sol-
utions of the maximization in Eq. (1). This degeneracy is
maximal for pairs like the N-qubit states j0i⊗N , j1i⊗N : they
are perfectly discriminated by projecting on the computa-
tional bases f0; 1g⊗k, ∀ k ∈ ½1; N�.
Consider therefore a more general scenario, in which

there is a set of cooperating observers that want to
discriminate between ρN and σN . Each of them performs
the optimal measurements M̃kα to discriminate the states
ρkα and σkα of subsystems composed of kα ≤ N particles
(Fig. 1), then computing dðρkα ; σkαÞ. The setup defines a
measurement partition

Pkα ≔
�
M̃kα ;

X
α

kα ¼ N

�
:

For example, given N ¼ 3, there are the following options:
three observers perform single-site detections, determining
the partition fM̃1;M̃1;M̃1g; an observer makes a
bipartite measurement, and another one performs a sin-
gle-particle measurement, inducing three possible parti-
tions fM̃2;M̃1g [25]; a single observer implements a
three-site measurement M̃3. The measurements on
different subsystems are independent and compatible,
½M̃kαi ;M̃kαj � ¼ 0, ∀M̃kαi , M̃kαj ∈ Pkα . Then, we might
pick the sum of all the contributions

P
α dðρkα ; σkαÞ to

quantify the information that is extractable from Pkα .
Consequently, the maximal value of the arithmetic sum
over all the system partitions could be a new measure of
state distinguishability. Unfortunately, this quantity would
not take into account that each measurement is performed
on a different number of particles kα. It is experimentally
harder to implement M̃k than any M̃l<k. An extreme case

FIG. 1. Consider two N-particle states ρN and σN . A set
of observers compute the distance between the marginal s
tates of subsystems with size kα,

P
α kα ¼ N, given by

dðρkα ; σkαÞ ¼
P

i dclðTrfM̃kα
i ρkαg;TrfM̃kα

i σkαgÞ. We quantify
the difficulty to discriminate the two states by a weighted sum
of each observer contribution.
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is the discrimination of the GHZ state from the classically
correlated state jaj2j0ih0j⊗N þ jbj2j1ih1j⊗N : they are found
to be identical by all measurement setups but a full scale
N-particle detection. By increasing N, it becomes harder to
distinguish the two preparations. Yet, the maximal distance
sum is dðρN; σNÞ, which does not depend on N. A better
choice is, for each partition Pkα , to sum all the observer
contributions, while weighting their relative importance by
the inverse of the size of the measured subsystem

δd;Pkα
ðρN; σNÞ ≔

X
α

1

kα
dðρkα ; σkαÞ: ð3Þ

This more refined quantity filters out system degeneracy,
which manifests when two or more particles are in the same
state. Comparing the two states ρN ¼ j0ih0j⊗N and
σN ¼ j1ih1j⊗kj0ih0j⊗N−k, one has δd;Pkα

ðρN; σNÞ ≤ kMd.
Note that, conversely, the weighted sum

P
α kαdðρkα ; σkαÞ

overvalues the difference between states. For example, by
choosing the N-particle detection M̃N , one would have
NdðρN; σNÞ ¼ Ndðρk; σkÞ ¼ NMd, ∀ k.
We are now ready to quantify the ability to discriminate

two arbitrary N-partite quantum states by a single index:
We define the dweighted distance between two states ρN

and σN as

DdðρN; σNÞ ≔ max
Pkα

δd;Pkα
ðρN; σNÞ: ð4Þ

We further justify the definition. Since it is a (weighted)
sum of distances with positive weights, the weighted
distance inherits the first and fourth properties of the
distance function in Eq. (1), which we listed in Eq. (2).
The second property, the faithfulness, is satisfied because it
is the maximal one among all the weighted sums in Eq. (3).
The third property, contractivity, holds for local CPTP
maps performed on a single subsystem. See the full proof in
the Supplemental Material [26]. The weighted distance is
invariant only under single-particle unitary maps, while the
standard distance d is invariant under all unitaries. This
property is crucial for comparing many-body configura-
tions, capturing the fact that the states j00i, aj00i þ bj11i
are more different than j00i, aj00i þ bj10i. The weighted
distance is bounded via the chain of inequalities

1

N
dðρN; σNÞ ≤ DdðρN; σNÞ ≤ NdðρN; σNÞ ≤ NMd; ð5Þ

being maximal for “maximally different” preparations,
such that both the global states and all their
marginal states are orthogonal. Note that the importance
of the largest measurement setup does not increase under
trivial extensions of the system. For example, consider
the N-partite states j0i⊗N , jx1x2;…; xNi. By adding a
Q-particle register in j0i⊗Q, the new states are j0i⊗NþQ,
jx1x2;…; xNij0i⊗Q. One has ðN þQÞdðρNþQ; σNþQÞ ≥

NdðρN; σNÞ, while DdðρNþQ; σNþQÞ ¼ DdðρN; σNÞ, since
an N-particle detection M̃N is still maximally informative.
We test the usefulness of the notion of weighted

distance. Adopting as standard distance the Bures length
BðρN; σNÞ ≔ cos−1 FðρN; σNÞ [14,15,27], motivated by the
considerations detailed via Eqs. (1)–(4), we define the
weighted Bures length as

DBðρN; σNÞ ≔ max
Pkα

δB;Pkα
ðρN; σNÞ: ð6Þ

We compare the two quantities via explicit calculations in
some interesting case studies, see Table I. The results
confirm that the weighted Bures length is more informative
than the standard Bures length. For pure states, the latter is
equal to the Fubini-Study distance [28]. Consequently,
Eq. (6) defines a weighted Fubini-Study distance for pure
states. In general, the full knowledge of the quantum states
under study is required for exact calculations of both
standard and weighted distances, but statistical methods
for estimating standard distances from incomplete data are
readily applicable, by construction, to weighted distance
estimation [29–31].
The weighted Bures length lower bounds the

experimental cost of quantum processes.—The weighted
distances have a clear metrological meaning, being
more sophisticated proxies than standard distances for
state discrimination [33]. An important related question
asks what the cost is of creating very different configura-
tions in terms of physical resources, such as energy and
time. Specifically, generating highly correlated states
from j0i⊗N , transforming an initial state in a very different
output, is a requisite of all quantum algorithms.
Establishing the physical limits to quantum programming,
i.e., how small state preparation circuits can be, is therefore
of great interest, as environmental noise quickly corrupts
them [34]. The results in Table I highlight that, when
calculated between an initial state j0i⊗N and highly
correlated outputs, the weighted Bures length is monoton-
ically increasing with the size of the system. We show that,
indeed, the weighted Bures length between the initial and
final states of a quantum process is the minimum
experimental cost of the state transformation. We
employ a geometric argument to rigorously prove the
claim (Fig. 2).
A quantum dynamics from an N-qubit input state ρN to

a final state σN is a path in the stratified Riemannian
manifold of density matrices [8,35]. The state of the
system at time t has spectral decomposition
ρN;t ¼

P
2N

r¼1 λrðtÞjrðtÞihrðtÞj, t ∈ ½0; T�, with ρN;0 ≡ ρN ,
ρN;T ≡ σN . Its rate of change is the time derivative _ρN;t.
One builds a distance measure between two quantum
states ρN and σN by calculating the minimum of the length
functional

R
T
0 jj_ρN;tjjdt for some given norm. In particular,

the input-output Bures length is the distance induced by
the Fisher norm [36]
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BðρN; σNÞ ¼ min
ρN;t

Z
T

0

jj_ρN;tjjFdt;

jj_ρN;tjj2F ≔
X
r

_λ2rðtÞ
4λrðtÞ

þ
X
r<s

jhrðtÞj_ρN;tjsðtÞij2
λrðtÞ þ λsðtÞ

: ð7Þ

The first term in Eq. (7) is the classical Fisher norm. The
second one is a purely quantum contribution (related to
the state eigenbasis evolution), being the only term
surviving for unitary maps (the two terms coexist for
generic CPTP operations). We evaluate the cost of
eigenbasis changes, adopting the viewpoint that classical

computations are free. The transformation can be
split into two steps: the eigenvalue change and the
eigenbasis change: ρN → τN → σN , in which τN ¼P

2N
r¼1 λrðTÞjrð0Þihrð0Þj [37]. The first step can be

always completed via a classical process [38], while
the second one can be implemented by a unitary path
τN;t; τN;0 ≡ τN; τN;T ≡ σN . For unitary processes, the first
step is redundant, ρN ¼ τN . Hence, we quantify the
“quantum cost” for implementing an arbitrary (even
nonunitary) transformation ρN → σN as

BqðρN; σNÞ ≔ min
unitary pathsτN;t

Z
T

0

jj_τN;tjjFdt: ð8Þ

Suppose we carry out the second step via a
sequence of quantum gates U ¼ ΠlUl; Ul ¼ e−iHlTl

(we run U1, then U2, and so on). The spectral decom-
position of each time-independent Hamiltonian is
Hl ¼

P
2kl
xl¼1 hxl jhxlihhxl j; hxl>m ≥ hxm; ∀ l; m, and Tl is

the runtime of each gate. Note that any Hamiltonian Hl

affects kl ≤ N particles. Call τlN;tl
the intermediate

state at time tl ∈ ½0; Tl� while implementing Ul, with
τlN;0 ≡ τlN; τ

1
N;0 ≡ τN . Since time-independent Hamiltonian

dynamics are constant speed processes, one has

BqðρN; σNÞ ≤
Z P

l
Tl

0

jj_τN;tjjFdt

¼
X
l

Z
Tl

0

jj_τlN;tl
jj
F
dtl ¼

X
l

jj_τlN jjFTl: ð9Þ

TABLE I. We calculate the standard Bures length and the weighted Bures length, as defined in Eq. (6), forN-qubit states (full details in

the Supplemental Material [26]). Here jGHZki ¼ ðaj0i⊗k þ bj1i⊗kÞ, classk ¼ ðjaj2j0ih0j⊗k þ jbj2j1ih1j⊗kÞ, and jDickeN;ki ¼
ð1=

ffiffiffiffiffiffiffi
ðNkÞ

q P
i Pij0i⊗N−kj1i⊗k is the N-qubit Dicke state with k excitations [32], in which Pi are the possible permutations. The

weighted Bures length is a better descriptor of the difference between multipartite quantum states. If two states become more different by
increasingN, i.e., there are more measurement setups that discriminate between them, the quantity increases. If discriminating two states
becomes harder, the weighted Bures length decreases.

ρN; σN BðρN; σNÞ DBðρN; σNÞ
j0i⊗N , j1i⊗kj0i⊗N−k π=2; ∀ k kðπ=2Þ
j0i⊗N , jGHZki ⊗ j0i⊗N−k cos−1 jaj k cos−1 jaj
j0i⊗N , jGHZli⊗kj0i⊗N−kl cos−1jajk kl cos−1 jaj
j0ih0j⊗N; classk ⊗ j0ih0j⊗N−k cos−1 jaj, ∀ l k cos−1 jaj
j0ih0j⊗N , class⊗k

l ⊗ j0ih0j⊗N−kl cos−1jajk, ∀ l kl cos−1 jaj
j0i⊗N , jDickeN;ki ðπ=2Þ∀ k Ncos−1ð1 − k=NÞ
j0ih0j⊗N , Ik=2k ⊗ j0ih0j⊗N−k cos−1ð1=

ffiffiffiffiffi
2k

p
Þ kcos−1ð1= ffiffiffi

2
p Þ

jGHZNihGHZN j; IN=2N; jaj; jbj ≠ 1=
ffiffiffi
2

p
cos−1½ðjaj þ jbjÞ=

ffiffiffiffiffiffi
2N

p
� Ncos−1½ðjaj þ jbjÞ= ffiffiffi

2
p �

classN; IN=2N; jaj; jbj ≠ 1=
ffiffiffi
2

p
cos−1½ðjaj þ jbjÞ=

ffiffiffiffiffiffi
2N

p
� Ncos−1½ðjaj þ jbjÞ= ffiffiffi

2
p �

jGHZNihGHZN j; IN=2N; Neven; jaj ¼ jbj ¼ 1=
ffiffiffi
2

p
cos−1ð1=

ffiffiffiffiffiffiffiffiffiffi
2N−1

p
Þ Nπ=16

classN; IN=2N; Neven; jaj ¼ jbj ¼ 1=
ffiffiffi
2

p
cos−1ð1=

ffiffiffiffiffiffiffiffiffiffi
2N−1

p
Þ Nπ=16

classN; jGHZNihGHZN j cos−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4

p
cos−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a4 þ b4

p
=N

FIG. 2. We prove that the weighted Bures length DBðρN; σNÞ is
a lower bound to the experimental cost of the state transformation
ρN → σN . The bound is also valid for nonunitary quantum
processes.
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The inequality can be saturated when σN (and therefore
τN) is a pure state. The squared speed of the process lower
bounds the variance of the generating Hamiltonian, which
is also constant in time [39],

VτlN
ðHlÞ ≔ TrfH2

l τ
l
Ng − TrfHlτ

l
Ng2 ≥ jj_τlN jj2F ; ∀ l:

ð10Þ

By employing the (halved) seminorm El ≔
ðhxl¼2kl − hxl¼1Þ=2 [40], we quantify the cost of the state
transformation in terms of physical resources by

RUl
≔ klElTl ⇒ RU ≔

X
l

RUl
: ð11Þ

The first term kl represents the size of each quantum gate
Ul. The second term quantifies the energy requirement for
each gate. Note that E2

l ≥ VρlðHlÞ; ∀ l. The third
contribution is the allowed time interval for each gate.
Factoring in the gate size is essential. A single-qubit
Hamiltonian of spectrum ðx;−xÞ is easier to implement, in
some given time Tl, than a k > 1-partite interaction
generated by ðx; 0;…;−x|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

2k

Þ, even though the eigenvalue

gap El is equal. By remembering Eq. (5) and exploiting
the triangle inequality of the weighted distances, it follows
that the experimental cost RU of a state transformation
ρN → σN is lower bounded by the weighted Bures length
between initial and final states,

RUl
≥ klBqðτlN; τlþ1

N Þ ≥ DBðτlN; τlþ1
N Þ; ∀ l

⇒ for unitary processes : RU ≥ DBðρN; σNÞ;
for general quantum processes∶ RU ≥ DBðτN; σNÞ:

ð12Þ

The bounds are formally similar to energy-time uncer-
tainty relations and quantum speed limits [17–22], yet
they can be more informative, as they provide a more
nuanced resource count for quantum processes. For
example, they determine the minimum time to complete
state transformations at fixed energy and gate size. Note
that the right-hand side is zero if and only if ½ρN; σN � ¼ 0.
That is, if and only if there exists a classical dynamics
that transforms the input into the output state [38]. The
left-hand inequality in Eq. (12) is saturated when the
intermediate states τlN are the most sensitive ones to the
unitary perturbations Ul; i.e., they are coherent super-
positions ðjh2kl i þ eiϕjhxl¼1iÞ=

ffiffiffi
2

p
;ϕ ∈ ½0; 2π�. The result

in Eq. (12) advances our understanding of many-body
quantum processes in three ways. First, it provides a lower
limit to the difficulty to run quantum computations in
terms of an exact, analytical bound, rather than an order of
magnitude [41–43]. Second, it applies to mixed states and

nonunitary processes, beyond the idealized scenario of
perfectly controllable quantum dynamics. Third, the right-
hand side of the bound, the weighted Bures distance, is not
just a numerical value, but it has a physical meaning.
Specifically, the bound highlights that our ability to
manipulate quantum states, e.g., generating entangled
configurations from the input state j0i⊗N , is never greater
than the instrumental experimental cost.
Conclusion.—We have introduced the weighted

distances [Eq. (4)], a new class of information measures.
They capture the difficulty in distinguishing many-body
quantum states. Moreover, we uncovered a fundamental
bound to quantum information processing [Eq. (12)]. The
size of state preparation algorithms is never smaller than the
weighted Bures length between the input and the output
states, i.e., our ability to discriminate between the two
states. We anticipate that the weighted distances will help
evaluate the theoretical and experimental performance of
quantum technologies [44] and explore critical properties
of open quantum systems [45].
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