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Establishing long-distance quantum entanglement, i.e., entanglement transmission, in quantum
networks (QN) is a key and timely challenge for developing efficient quantum communication. Traditional
comprehension based on classical percolation assumes a necessary condition for successful entanglement
transmission between any two infinitely distant nodes: they must be connected by at least a path of perfectly
entangled states (singlets). Here, we relax this condition by explicitly showing that one can focus not on
optimally converting singlets but on establishing concurrence—a key measure of bipartite entanglement.
We thereby introduce a new statistical theory, concurrence percolation theory (ConPT), remotely analogous
to classical percolation but fundamentally different, built by generalizing bond percolation in terms of
“sponge-crossing” paths instead of clusters. Inspired by resistance network analysis, we determine the path
connectivity by series and parallel rules and approximate higher-order rules via star-mesh transforms.
Interestingly, we find that the entanglement transmission threshold predicted by ConPT is lower than the
known classical-percolation-based results and is readily achievable on any series-parallel networks such as
the Bethe lattice. ConPT promotes our understanding of how well quantum communication can be further
systematically improved versus classical statistical predictions under the limitation of QN locality—a
“quantum advantage” that is more general and efficient than expected. ConPT also shows a percolationlike
universal critical behavior derived by finite-size analysis on the Bethe lattice and regular two-dimensional
lattices, offering new perspectives for a theory of criticality in entanglement statistics.
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Recently, much attention has been given to quantum
network (QN) [1] (sometimes also referred to as the
quantum Internet [2]) for better understanding of entangle-
ment transmission, i.e., establishing long-distance
entanglement between arbitrary two nodes, as a quantum
information flow from the perspective of network science
[3]. Only local operations and classical communication,
a.k.a. LOCC [4] are allowed between different nodes in a
QN—a limitation by locality. In this Letter, we focus on a
minimal version of QN [1] that is an n-node network,
denoted GθðnÞ. Each link i is an identical pure state
jψ iðθÞi ¼ cos θj00i þ sin θj11i weighted by the sole
parameter 0 ≤ θ ≤ π=4 that admits a probability measure
p ≔ 2 sin2 θ known as the optimal probability to convert
jψ iðθÞi to a singlet (i.e., a maximally entangled state by
θ ¼ π=4). Hence, a mapping between entanglement trans-
mission in infinite QN and classical bond percolation
theory, called classical entanglement percolation (CEP)
has been discovered [1]. This indicates the existence of a
nontrivial threshold—in terms of p per link—for establish-
ing sufficient entanglement between arbitrary two nodes.
Interestingly, a scheme called quantum entanglement per-
colation (QEP) [1] shows that there are scalable quantum
strategies that can change the whole network topology and

thus may lower the classical percolation threshold, sug-
gesting a “quantum advantage” vs CEP for specific net-
work topologies. Generalizations to mixed states [5],
tripartite entanglements (GHZ states) [6], and random
networks [7–9] have since been studied under the QEP
scheme for further efforts on lowering the threshold, in
hope of exploiting more advantage until reaching some
presumed minimum threshold [6].
Still, all aforementioned schemes are based on the

classical percolation framework. Thus, no matter how
designed, the schemes have always demanded one
condition to achieve entanglement transmission in infinite
QN: two infinitely distant nodes must be connected by at
least one path of singlets, so that by applying a specific
LOCC called “swapping” [10] at in-between nodes, a
singlet can eventually be established between the pair of
nodes [1]. Naturally, a fundamental question whether, in
general, such a condition can be relaxed arises [6,11]. The
inability of answering this within the classical percolation
framework (since the question is pertinent to the mapping
itself) substantially prevented us from a true comprehen-
sion of the quantum advantage possessed by different QN
topology. Simply adding a nonscalable quantum strategy—
which can only change the network topology locally—into
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the QEP scheme is not helpful for making a statistical
argument on the percolation threshold, and hence the
generality of the quantum advantage on arbitrary network
topology is yet to be understood.
In response to the question, here we introduce an

alternative mapping called concurrence percolation theory
(ConPT) which explicitly relaxes the necessity of establish-
ing a path of singlets. We directly generalize percolation
theory in terms of path connectivity and apply it to
concurrence [12] (a key measure of bipartite entanglement
defined as c ≔ sin 2θ for a pure state), rather than singlet
conversion probability like in the traditional CEP/QEP
scheme [1]. The existence of ConPT itself, as we will see,
implies that entanglement transmission can also be estab-
lishedwhen the two infinitely distant nodes are connected by
paths of only imperfectly entangled states—as long as there
are enough paths. Interestingly, we find that the threshold
predicted by ConPT is the lowest threshold compared to
earlier known schemes (Table I). Our results help extending
our knowledge of quantum advantage as well as discovering
potentially new criticality in entanglement statistics.
Percolation as a theory of connectivity.—Recent results

[8] hint that the cluster size may be an ill-defined order
parameter of a genuine statistical theory of entanglement
transmission. Indeed, percolation theory was initially about
path connectivity before being reformulated into clusters
due to mathematical convenience. Thus, instead of clusters,
here we make direct use of the classical “sponge-crossing”
probability PSC—the probability that there is an open path
connecting two far-apart boundaries, which was used in the
early studies of bond percolation on 2D (and higher-
dimensional) lattices [13]. PSC can be calculated by
connectivity rules using the link weights p (0 ≤ p ≤ 1)
—which are simply determined numbers before a posteriori
explained as occupation probabilities—along all paths that
connect the two boundaries. In the thermodynamic limit,
n → ∞, we expect that PSC should approach either 0 or 1,
respectively, in the sub- or supercritical regimes, separated
by the percolation threshold pth [13].
For a series-parallel network [14], by definition, only

two connectivity rules, namely, series and parallel rules, are
sufficient for calculating PSC. Surprisingly, the series and
parallel rules for classical percolation are simple but both

are extensible and commutable (Table II), similar to
calculating the net electrical resistance in a resistance
network. When “loops” exist (for example, in a bridge
circuit [14]), also required are higher-order connectivity
rules which are complicated (but closed form owing to
the additivity of probability measure). Additionally, these
rules can be well approximated by only series and parallel
rules via a useful technique known as the star-mesh (SM)
transform [15] (Table II), which is similar to a local
renormalization group process (see Supplemental Material
[16]). This technique was used in, e.g., the Frank-Lobb
algorithm [17], for solving classical percolation problems.
We expect that ConPT can be built similarly, yet not on

probability but on concurrence. We denote by CSC the
sponge-crossing concurrence and cth the corresponding
threshold on the concurrence c of each link in GθðnÞ. CSC in
the sub- or supercritical regimes should also approach
either 0 or 1 in the thermodynamic limit. We proceed by
examining possible connectivity rules in QN for trans-
mission of concurrence that are allowed by LOCC in an
optimal manner. In general, a full probabilistic argument
should be built since LOCC involves selective measure-
ments [18] of quantum states and results in probabilistic
outcomes [11]. However, there is a subset of LOCC which
is considered “deterministic” as it only yields one possible
outcome in terms of pure states, up to unitary equivalence.
The deterministic LOCC is what we need for building
connectivity rules so as to keep ConPT a determined theory
of connectivity and avoid mixing concurrence with prob-
ability measures. Fortunately, we find that ConPT also
admits similarly simple but general series and parallel rules
(Table II), the realizability of which by LOCC is dis-
cussed below.
Series and parallel rules as LOCC.—(i) Series rule.

When two links of concurrence cAR, cRB are connected in
series between three nodes, Alice-Relay-Bob (A-R-B),
“swapping” on R projects out four probabilistic outcomes
between A and B [10]. The final average concurrence is
C ¼ P

4
k¼1 ωkCk, where ωk is the probability of producing

a pure state of concurrence Ck.
P

k ωk ¼ 1 is understood.
When a particular Bell basis (the XZ basis [11]) is chosen
for projection, not only is C optimal but also all Ck are
identical to the product of concurrences of the two

TABLE I. ConPT predicts the lowest threshold compared to those obtained from known classical-percolation-theory-based schemes.
All thresholds are given in θ under a change of variables p≡ 2 sin2 θ.

[unit: ðπ=4Þ−1θ] Bethe lattice (degree k) Square Honeycomb Triangular

CEP [1] ð4=πÞ sin−1½1= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðk − 1Þp � 0.670 0.777 0.545

QEP [1,7,11] ð4=πÞ sin−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PswapðkÞ=2

p a 0.670 0.761 0.545

QEP-GHZ [6] ð4=πÞ sin−1 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PGHZðkÞ=2

p
b 0.584 0.745 0.481

ConPT (Fig. 1) ð2=πÞ sin−1ð1= ffiffiffiffiffiffiffiffiffiffiffi
k − 1

p Þ 0.42(8) 0.51(8) 0.32(8)
aPswapðkÞ ¼ 2x − x2, where xðkÞ is the solution of 2xþ xkðxk − x − k − 1Þ − ð1 − xÞ=ðk − 1Þ ¼ 0 by the q-swapping strategy [7].
bPGHZðkÞ ¼ x is the solution of 1 − ð1 − xÞPbk=2−1c

i¼0 ð2ii Þ4−ið2x − x2Þi − 1=ðk − 1Þ ¼ 0 where b·c is the floor function [6].
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links, Ck ¼ cARcRB, hence admitting deterministic LOCC.
(ii) Parallel rule. For two parallel links between A and B,
the product state jψABðθ1Þi ⊗ jψABðθ2Þi ¼ ðcos θ1j00i þ
sin θ1j11iÞðcos θ2j00i þ sin θ2j11iÞ belonging to H1 ⊗
H2 is a “two-ququart” state. By Nielsen’s theorem [4],
the maximally entangled two-qubit pure state obtainable by
LOCC is cos θtotj00i þ sin θtotj11i, where cos θtot ¼
cos θ1 cos θ2 is equal to the largest Schmidt coefficient,
provided that cos θ1 cos θ2 > 1=

ffiffiffi
2

p
. When cos θ1 cos θ2 ≤

1=
ffiffiffi
2

p
, a singlet cos θtot ¼ 1=

ffiffiffi
2

p
can always be obtained.

Again, not only is the LOCC deterministic but it actually
optimizes the obtainable average concurrence C ¼P

k ωkCk as well, a result of concurrence being an
entanglement monotone [19].
A particular realization of these LOCC on some series-

parallel hierarchical lattices [20] has been given in
Ref. [11], where the series rule is called a worst-case
entanglement (WCE) strategy, since it maximizes the WCE
established in a 1D chain. Here, we argue that the parallel
rule is also a WCE strategy for parallel links, because it not
only maximizes the average concurrence but also guaran-
tees that the worst case is equal to the average.
On general networks, the higher-order connectivity

rules produced by the SM transform may not be realizable
by LOCC. They are only approximations of the true
LOCC-allowing rules. Generalizing a quantum channel

by including multiple entanglement links may help us
understand and even determine the true rules—a difficult
task to be handled by multipartite strategies [6] and QN
routing [21].
Percolation thresholds.—The Bethe lattice is a typical

series-parallel network where each node has the same
degree k [Fig. 1(a)]. PSC and CSC are defined as between
the root and the entire boundary and can be solved exactly.
Using an exact renormalization technique on the series and
parallel rules (see Supplemental Material [16]), we first
recover the classical threshold pth ¼ 1=ðk − 1Þ; whereas in
ConPT we find cth ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
k − 1

p
, and thus the ConPT

threshold is always smaller, i.e., 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2th

p
≤ pth.

Interestingly, the percolation curve of CSC [Fig. 1(e)]
exhibits not only a percolation threshold cth but also a
saturation point csat which can be solved exactly too,

csat ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þ1=k− ð1=4Þ1=k

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2Þðk−1Þ=k− ð1=4Þðk−1Þ=k

q
,

an anomaly of the ConPT parallel rule (Table II) being not a
smooth function. The existence of a saturation point reflects
a stunning quantum advantage in Bethe lattices: with
certainty one can establish a singlet that connects any
node to the boundary, as long as the entanglement in each
link exceeds the saturation point. This advantage cannot be
revealed from any scheme based on classical percolation
theory where a singlet can only be established with
certainty if each link is also perfectly entangled.
If we replace k by fkþ ð1 − fÞ in pth and cth

(0 < f ≤ 1), then pth and cth will denote the thresholds
not for the original Bethe lattice but for a diluted one where
1 − f fraction of links are randomly removed (see
Supplemental Material [16]). A less-than-one f can be
understood as an imperfection of LOCC, and the depend-
ence of pth and cth on f thus determines the robustness of
entanglement transmission under random imperfections.
When f < 1=ðk − 1Þ, both pth and cth become unphysical
because of the breakdown of the Bethe lattice structure.
Finally, Figs. 1(b)–1(d) show 2D lattices with left and

right boundaries (blue dots) and possible paths connecting
them (arrow lines), for which the SM transform must be
used to determine the higher-order connectivity. Shown
correspondingly in Figs. 1(f)–1(h) are how the sponge-
crossing quantities change as a function of p and c. We
find, again, that the thresholds predicted by ConPT are
always smaller. Indeed, this result can be understood in an
exact manner by directly comparing the series and parallel
rules in Table II [22].
Critical behavior.—Percolation theory is associated with

universal critical behavior near the percolation threshold.
We hypothesize that ConPT as a generalization of bond
percolation should also exhibit critical exponents that
depend on dimensionality but not on short-range details.
However, ConPT is not defined by clusters but on paths,
thus lacking a suitable clusterlike definition of an order
parameter. Hence, we focus solely on the thermal exponent,

TABLE II. Connectivity rules.

Classical ConPT

Series rule p ¼ p1p2 � � � c ¼ c1c2 � � �
Parallel rule 1 − p ¼

ð1 − p1Þð1 − p2Þ � � �
1þ

ffiffiffiffiffiffiffiffi
1−c2

p
2

¼ maxf1
2
;

1þ
ffiffiffiffiffiffiffiffi
1−c2

1

p
2

1þ
ffiffiffiffiffiffiffiffi
1−c2

2

p
2

� � �g
Higher-order
rules

Can be approximated by the SM transform by
the following two-step argument:

1. The SM transform can reduce an
n-graph to an (n − 1)-graph (right
panel) and is solvable by applying the
series and parallel rules recursively
through a group of nðn − 1Þ=2
coupled equations (see Supplemental
Material [16] for details).

2. Applying the transform consecutively
on a network can reduce nodes one by
one—and thus reduce any topology to
two nodes, yielding the final
(approximate) connectivity between
them (bottom panel, i: → viii.)

.
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ν, which characterizes the divergence of correlation length
[23]. ν is fully and universally determined by the spacial
dimension but not the order parameter and therefore may be
confirmed conclusively.
The most feasible way to extract ν is by finite-size

analysis. Figure 2 shows how this is done for the Bethe
lattice which yields mean-field exponents. Recognizing the
number of layers l as the shortest-path distance between the
root and the boundary [23], we find zν ¼ 1 both below cth
[Fig. 2(a)] and above cth [Fig. 2(b)], where z is the
dynamical exponent. For infinite-dimensional structures
it is reasonable to expect that l� ∼ ξz ¼ ξ2 holds as a
general random-walk nature [23] between the characteristic
“time” l� and the Euclidean correlation length ξ ∼
jc − cthj−ν for not only classical percolation but also
ConPT. Thus ν ¼ 1=2 is derived.
We may proceed and find other universal power laws,

especially, CSC ∼ jc − cthj1=2 and 1 − CSC ∼ jc − csatj2 near
cth and csat, respectively, independent of k [Fig. 2(c)].
However, in ConPT there is no reason to fix the order
parameter to be CSC and claim that β ¼ 1=2. It is equally

possible to let the order parameter be CSC to some arbitrary
xth power near the critical threshold, but then we will have
β ¼ x=2 unfixed.
Finite-size analysis on 2D lattices is more difficult. As

shown in Figs. 1(f)–1(h), both PSC and CSC seem to
gradually converge to a step function as the system size
L ∼

ffiffiffi
n

p
increases, exhibiting an essential finite-size effect

(despite very small L because of the heavy computation
needed in solving the SM transform). Here, we take
advantage of a set of finite-size scaling relations first
established by Kesten [24] in 2D percolation to explain
the universal exponential decay of sponge-crossing prob-
ability in either the subcritical regime, given by
PSC½GθðnÞ� ∼ e−L=ξ, p < pth, or the supercritical regime,
by 1 − PSC½GθðnÞ� ∼ e−L=ξ, p > pth. The scaling of Zξ [25]
in both sub- and supercritical regimes for classical perco-
lation is jointly plotted [Fig. 3(a)]. The thermal exponent
hence obtained is close to the known exact and universal
value ν ¼ 4=3 for different 2D lattices. On the other
hand, for ConPT a similar value ν ¼ 1.3ð3Þ is obtained
[Fig. 3(b)], also seemingly independent of lattice types. The
2D thermal exponents of both classical percolation and
ConPT are thus not very different, hinting that the two
might belong to the same universality class. This can be
eventually tested if a proper definition of order parameter
for ConPT is possible so that other critical exponents will
be accessible.

(a) (b) (c) (d)

(e) (g)

(f) (h)

FIG. 1. Comparison between classical percolation theory and
ConPT. (a) Bethe lattice (e.g., k ¼ 3). (b) Square lattice (e.g.,
L ¼ 5). (c) Honeycomb lattice (e.g., L ¼ 4). (d) Triangular lattice
(e.g., L ¼ 4). (e) For the Bethe lattice, PSC ¼ 1 − ð1 − pÞ3=p3

yields pth ¼ 1=2 for k ¼ 3; CSC ¼ sinf2 cos−1½ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4þ c−2

p
−

1=2Þ3=2�g yields not only cth ¼ 1=
ffiffiffi
2

p
but also csat above which

the analytical solution is unphysical (red dashed), making CSC ¼
1 when c ≥ csat. (f)–(h) For the corresponding 2D lattice types
(b)–(d), SM transform approximations produce CSC (red) with
respect to c≡ sin 2θ, compared with PSC (brown) with respect to
p≡ 2 sin2 θ produced by standard Monte Carlo simulations. cth
(red vertical) and pth (brown vertical) are determined by their
finite-size crossing points.

(a) (b)

(c)

FIG. 2. Universality for the Bethe lattice. (a) Finite-size
analysis of ConPT below cth ¼ 1=

ffiffiffi
2

p
(k ¼ 3). CSC follows a

power law with an exponential cutoff with respect to the number
of layers l, CSC ∼ l−1=2 expð−l=l�Þ, where l� diverges as a power
law when approaching cth. Numerically zν ¼ 1.082ð95Þ is
obtained by fitting near jc − cthj ∼ 10−5 (dark blue squares).
(b) Finite-size analysis above cth (k ¼ 3). The finite-size critical
threshold cthðlÞ is defined as the turning point of CSC,
cthðlÞ ¼ cj∂2CSC=∂c2¼0, which deviates from cth as a power law
with respect to l. Again, numerically 1=ðzνÞ ¼ 0.99ð5Þ is
obtained near l ∼ 104 (dark blue squares). (c) cth and csat for
general k. Two universal power laws of CSC with respect to c are
found by series expansions near cth and csat and confirmed by
numerical results (dots) on a finite Bethe lattice of l ¼ 500.
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Discussion.—Our results promote the comprehension of
how efficient an entanglement transmission strategy can be
designed by LOCC. That being said, it is necessary to
expand the theoretical framework to understand mixed
states, as any realistic quantum device will unavoidably
bring in thermal noise or randomly break down. Another
theoretical interest here is the shift of focus of statistical
theory from clusters to paths. This has been considered and
explored in problems of classical directed percolation [26]
and the corresponding quantum topological order models
[27]. Our results suggest that path connectivity should be
more general than clusterlike quantities, as the latter are
always limited to probability measures yet the former is
not. We hope to understand this better also for higher-
dimensional lattices and complex networks in the future.
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