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Non-Hermiticity can destroy Anderson localization and lead to delocalization even in one dimension.
However, a unified understanding of non-Hermitian delocalization has yet to be established. Here, we
develop a scaling theory of localization in non-Hermitian systems. We reveal that non-Hermiticity
introduces a new scale and breaks down the one-parameter scaling, which is the central assumption of
the conventional scaling theory of localization. Instead, we identify the origin of unconventional non-
Hermitian delocalization as the two-parameter scaling. Furthermore, we establish the threefold universality
of non-Hermitian localization based on reciprocity; reciprocity forbids delocalization without internal
degrees of freedom, whereas symplectic reciprocity results in a new type of symmetry-protected
delocalization.
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Anderson localization [1] is the disorder-induced locali-
zation of coherent waves and plays an important role in
transport phenomena of condensed matter [2,3], light [4],
and cold atoms [5,6]. A unified understanding of Anderson
localization is provided by the scaling theory [7,8]. On the
basis of the one-parameter-scaling hypothesis of the con-
ductance with respect to to the system size, it describes the
criticality of localization transitions in three dimensions
and predicts the absence of delocalization in one and two
dimensions. Symmetry further changes the universality
class of localization. For example, time-reversal symmetry
(reciprocity) in the presence of spin-orbit interaction
enables delocalization even in two dimensions [9]; chiral
(sublattice) symmetry enables delocalization of zero modes
even in one dimension [10–14].
Meanwhile, the physics of non-Hermitian systems has

attracted considerable interest in recent years [15–18]. Non-
Hermiticity originates from exchanges of energy or par-
ticles with an environment and leads to rich properties
unique to particle-number-nonconserving systems in
dynamics [19–36] and topology [37–64]. Anderson locali-
zation was also investigated in non-Hermitian systems with
asymmetric hopping [65–78] and gain or loss [79–84], the
latter of which is directly relevant to random lasers [85].
Even in the presence of non-Hermiticity, random lasers in
one dimension never exhibit delocalization similarly to the
Hermitian case. By contrast, a non-Hermitian extension of
the Anderson model with asymmetric hopping, which was
first investigated by Hatano and Nelson [65], exhibits
delocalization in one dimension. Importantly, this implies
the breakdown of the conventional scaling theory of
localization, which predicts the absence of delocalization
in one dimension. In fact, since Anderson localization
results from the destructive interference of coherent waves,

non-Hermiticity should lead to decoherence and destroy
Anderson localization. However, it remains unclear how
non-Hermiticity changes the scaling theory of localization,
and a unified understanding of non-Hermitian localization
has yet to be obtained.
In this Letter,we develop a scaling theory of localization in

non-Hermitian systems. On the basis of the random-matrix
approach for nonunitary scattering matrices, we reveal that
non-Hermiticity introduces a new scale and breaks down the
one-parameter-scaling hypothesis. Instead, we demonstrate
the two-parameter scaling (Fig. 1), which is the origin of
unconventional non-Hermitian delocalization. Furthermore,
we establish the threefold universality of non-Hermitian
localization according to reciprocity (Table I). While non-
Hermitian systems exhibit unidirectional delocalization in
the absence of symmetry, reciprocity forbids it without
internal degrees of freedom, which explains the absence
of delocalization in random lasers. We also find a new
universality class of localization transitions: bidirectional
delocalization protected by symplectic reciprocity.
Non-Hermitian delocalization.—In the conventional

scaling theory of localization [8], we consider the depend-
ence of the conductance G on the length scale L. A
sufficiently small system is diffusive and described by
Ohm’s law (Boltzmann equation), leading to G ∝ Ld−2 in d
dimensions. For a sufficiently large system, on the other
hand, the wave coherence is relevant and Anderson locali-
zation can occur, leading toG ∝ e−αL (α > 0). The transition
between these two regimes can be understood by the scaling
function βðGÞ ≔ d logG=d logL. In the localized regime, it
is given as βðGÞ ¼ logG < 0 and hence the conductance G
gets smaller with increasing the system length L. We have
βðGÞ ¼ d − 2 in the diffusive regime, which is positive
(negative) for d > 2 (d < 2). Consequently, a localization

PHYSICAL REVIEW LETTERS 126, 166801 (2021)

0031-9007=21=126(16)=166801(7) 166801-1 © 2021 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.126.166801&domain=pdf&date_stamp=2021-04-22
https://doi.org/10.1103/PhysRevLett.126.166801
https://doi.org/10.1103/PhysRevLett.126.166801
https://doi.org/10.1103/PhysRevLett.126.166801
https://doi.org/10.1103/PhysRevLett.126.166801


transition occurs in three dimensions at G ¼ Gc where
βðGcÞ ¼ 0; by contrast, no transitions occur in one dimen-
sion since βðGÞ is always negative and G monotonically
decreases in both diffusive and localized regimes.
Non-Hermiticity gives rise to a new regime that has no

analogs in particle-number-conserving systems. In fact, it
describes coupling to an external environment and can lead
to amplification (lasing), resulting in G ∝ eγL with the
amplification rate γ > 0. In such a regime, we have βðGÞ ¼
logG > 0 in arbitrary dimensions, and hence delocaliza-
tion is possible even in one dimension. The amplifying
regime can arise from nonunitarity of scattering matrices.
In Hermitian systems, unitarity is imposed on scattering
matrices as a direct consequence of conservation of particle
numbers, and the transmission amplitudes cannot exceed
one. In non-Hermitian systems, by contrast, such a con-
straint is absent and the conductance G can be arbitrarily
large, which enables the amplification as G ∝ eγL.

The delocalization in the amplifying regime can also be
understood by the Thouless criterion [7,86]. In the diffusive
regime, it takes the Thouless time tTh ∝ L2 for a particle to
reach one end from the other in a systemof sizeLd. To realize
this diffusive transport, tTh should be smaller than the time
scale Δt ∝ ðΔEÞ−1 determined by the level spacing ΔE ∝
L−d of the spectrum. Because of tTh=Δt ∝ L2−d, this is
possible in three dimensions but impossible in one dimen-
sion. In the amplifying regime, on the other hand, particle
inflow from the environment enables the ballistic transport,
and the relevant time scale is tN ∝ L. Because of
tN=Δt ∝ L1−d, tN is comparable to Δt even in one dimen-
sion, which results in the delocalization. Saliently, an addi-
tional relevant scale accompanies the amplifying regime,
which implies the breakdown of the one-parameter-scaling
hypothesis [7,8], as discussed below.
Scaling equations.—To uncover universal behavior of

Anderson localization in non-Hermitian systems, we revisit
the Hatano-Nelson model [65] and derive the scaling
equations for transport properties. We show that the scaling
behavior should be understood in terms of two parameters
rather than one parameter. On the basis of this under-
standing, we later discuss Anderson localization for other
symmetry classes and find new universality classes. Our
scaling theory also explains the different universality
classes between the Hatano-Nelson model and random
lasers.
The Hatano-Nelson model [65] reads

Ĥ ¼
X

n

�
−
1

2
ðĉ†nþ1JRĉn þ ĉ†nJLĉnþ1Þ þ ĉ†nMnĉn

�
; ð1Þ

where ĉn (ĉ
†
n) annihilates (creates) a fermion at site n, JR ≔

J þ γ=2 (JL ≔ J − γ=2) describes the hopping from the left
to the right (from the right to the left), and Mn ∈ R is the
random potential at site n. The asymmetry γ of the hopping
can be introduced, for example, in open photonic systems
[31,74] and cold atoms with dissipation [52]. Whereas
eigenstates are localized for weak γ, they can be delocalized
for strong γ. In the literature, the complex spectrum [65,
67–69,76], the conductance [68,73], and the chiral transport
[74,75]were investigated for this latticemodel.Nevertheless,
the scaling theory has not been fully formulated.
The nature of non-Hermitian delocalization should

not depend on specific details of the model but solely
on symmetry. To understand such a universal feature, we
construct a continuum model from the Hatano-Nelson
model. To this end, we focus on the narrow shell around
the band center ReE ¼ 0 and decompose the fermions by
ĉn ¼ eikFnψ̂R þ e−ikFnψ̂L (kF ¼ π=2). Here, ψ̂R and ψ̂L are
the right-moving and left-moving fermions on the two
Fermi points (valleys), respectively. Assuming that ψ̂R and
ψ̂L vary slowly in space, we have the continuum model
Ĥ ¼ R

dxðψ̂†
Rψ̂

†
LÞhAðψ̂Rψ̂LÞT with

1
0

1

FIG. 1. Two-parameter scaling of non-Hermitian localization.
The renormalization-group flow is shown according to the
conductance GR from the left to the right and the conductance
GL from the right to the left. The system size L increases along
with the arrows. While localization with ðGR; GLÞ ¼ ð0; 0Þ (black
dot) occurs in Hermitian systems (GR ¼ GL), delocalization with
ðGR; GLÞ ¼ ð∞; 0Þ; ð0;∞Þ (red dots) arises for sufficiently
strong non-Hermiticity.

TABLE I. Threefold universality of non-Hermitian localization
based on reciprocity. The types of delocalization and the typical
conductances for L ≫ l are shown according to non-Hermiticity
γ and the mean free path l > 0.

Class Symmetry Delocalization Conductances

A No Unidirectional eð�γ−1=lÞL

AI† HT ¼ H No e−L=l

AII† σ2HTσ−12 ¼ H Bidirectional eðjγj−1=lÞL
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hA ¼ ð−i∂x þ iγ=2Þτ3 þm0ðxÞ þm1ðxÞτ1; ð2Þ

where Pauli matrices τi’s describe the two valley degrees
of freedom. We assume that m0 and m1 are Gaussian
disorder that satisfies hmiðxÞi ¼ 0 and hmiðxÞmjðx0Þi ¼
2μiδijδðx − x0Þ with μi > 0 and the ensemble average h⋆i.
Although we begin with the Hatano-Nelson model, we
emphasize that hA does not depend on its specific details
but universally on symmetry. Generic non-Hermitian
systems without symmetry including hA are defined to
belong to class A in the 38-fold classification of internal
symmetry [57,87,88].
Now, we formulate the scaling equations (functional

renormalization group equations). The conductance GR
from the left to the right (GL from the right to the left) is
given by the corresponding transmission eigenvalue TR
(TL) according to the Landauer formula [89]. Then, we
consider the incremental changes of TR=L, in addition to the
reflection eigenvalue RL from the left to the left (RR from
the right to the right), upon attachment of a thin slice in
which the scattering can be treated perturbatively. Such
attachment renormalizes the probability distribution of
TR=L and RL=R, resulting in its scaling (Fokker-Planck)
equation according to the system size L [90]. It provides all
the information about the transmission eigenvalues TR=L

and the conductances GR=L. In the Hermitian case, the
scaling equations were obtained by Dorokhov, and by
Mello, Pereyra, and Kumar [91–93].
For the continuum model hA, we find that non-

Hermiticity γ amplifies one of TR and TL and attenuates
the other, but does not have significant influence on their
phases. As a result, we have [90]

hdTR=Li
dL

¼ �γTR=L −
TR=Lð1 − RL=RÞ

l
; ð3Þ

where l ≔ 1=2μ1 is the mean free path determined by the
disorder strength. The ensemble average h⋆i is taken over
the attached thin slice and the phases of the scattered waves
for given TR=L and RL=R. This scaling equation, Eq. (3),
implies that the transmission amplitudes are given as
TR=L ¼ e�γLT̃ with the transmission amplitude T̃ in
Hermitian systems. For L ≫ l, the conductance fluctua-
tions become as large as the averages hGi, which no longer
represent the conductances of a single sample. In fact, the
conductance distributions are broad and asymmetric, and
follow the log-normal distributions. Consequently, the
typical conductances are Gtyp ≔ ehlogGi instead of hGi.
Because of G̃typ=Gc ∼ e−L=l for L ≫ l in the Hermitian
case [91–93], the typical conductances in the non-
Hermitian case are Gtyp

R=L=Gc ∼ eð�γ−1=lÞL. Thus, either
one of the two conductances exhibits delocalization. For
γ ≥ 0, for example, Gtyp

R diverges for L → ∞ above the

transition point γ ¼ γc ≔ 1=l, around which the critical
behavior jGtyp

R −Gcj=Gc ∝ jγ − γcj appears.
Two-parameter scaling.—In Hermitian systems, the

scaling equations and the conductance G̃ depend solely
on L=l. This confirms the one-parameter-scaling hypoth-
esis, which underlies the absence of delocalization in one
dimension [7,8]. However, the obtained scaling equation,
Eq. (3), clearly indicates the emergence of the additional
scale γ due to non-Hermiticity. In fact, non-Hermiticity leads
to the distinction betweenGR andGL, which is impossible in
Hermitian systems by conservation of particle numbers.
From Eq. (3), we show in Fig. 1 the renormalization-group
flow based on bothGR andGL. In addition to the fixed point
ðGR; GLÞ ¼ ð0; 0Þ for the localized phase, a pair of addi-
tional fixed points ðGR; GLÞ ¼ ðGc; 0Þ; ð0; GcÞ emerges
away from GR ¼ GL. As a result, delocalization with
ðGR; GLÞ ¼ ð∞; 0Þ; ð0;∞Þ is possible for sufficiently strong
non-Hermiticity. Therefore, the emergence of the new scale
and the breakdown of the one-parameter scaling are the
origin of the non-Hermitian delocalization in one dimension.
It is also notable that the average conductances are

hGR=Li=Gc ∼ eð�γ−1=4lÞL since the Hermitian counterpart
is hG̃i=Gc ∼ e−L=4l [91–93]. Hence, hGRi exhibits critical
behavior at γ ¼ 1=4l, which is different from the critical
point γ ¼ 1=l of the typical conductance Gtyp

R [73]. Such a
difference of the critical points is another manifestation
of the breakdown of the one-parameter scaling. In fact, if
the scaling equations are described solely by a single
parameter l, both hGRi and Gtyp

R are functions of L=l,
and hence their critical points should coincide with each
other. The different critical points of hGRi and Gtyp

R imply
the two different length scales l and γ−1.
Threefold universality by reciprocity.—Symmetry can

further change the universality class of Anderson locali-
zation. In particular, reciprocity, defined by T HTT −1 ¼ H
with a unitary matrix T , is fundamental symmetry relevant
to localization. For example, reciprocity with T T � ¼ þ1
(−1) enhances (suppresses) localization and shortens
(lengthens) localization lengths in Hermitian wires in
quasi-one dimension [91–93]. Moreover, symplectic reci-
procity with T T � ¼ −1 enables delocalization even in two
dimensions [9], although delocalization is forbidden with-
out symmetry protection. Here, we uncover the threefold
universality of non-Hermitian localization based on reci-
procity (Table I). As demonstrated below, the influence of
reciprocity is more dramatic than the Hermitian case.
We consider a non-Hermitian continuum model

hAI† ¼ −iτ3∂x þm0ðxÞ þ ½m1ðxÞ þ iγ=2�τ1; ð4Þ

which respects τ1hTAI†τ
−1
1 ¼ h and hence belongs to class

AI† (orthogonal class) [57,90]. Notably, the asymmetry
between the valleys [i.e., iðγ=2Þτ3 term in Eq. (2)] is
forbidden because of reciprocity, which leads to GR ¼ GL
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even in non-Hermitian systems. Thus, the nonunitary fixed
points away from GR ¼ GL in Fig. 1 cannot be reached,
and the unidirectional delocalization is forbidden. In terms
of the scaling equations, reciprocity-preserving non-
Hermiticity is irrelevant by the ensemble average over
disorder, whereas reciprocity-breaking non-Hermiticity
gives rise to an additional scale. Consequently, the univer-
sality in class AI† is the same as the Hermitian counterpart,
which contrasts with class A. The continuum model in
Eq. (4) describes disordered wires with gain or loss (i.e.,
complex on-site potential), including random lasers [85].
Reciprocity underlies the absence of delocalization in
random lasers.
On the other hand, reciprocal systems with T T � ¼ −1

instead of T T � ¼ þ1 are defined to belong to class AII†

(symplectic class) [57]. Although reciprocity imposes
GR ¼ GL also in this case, an important distinction in
the symplectic class is Kramers degeneracy, which gives
rise to a new type of non-Hermitian delocalization
protected by reciprocity. The corresponding continuum
model is

hAII† ¼ ½−i∂x þ Δσ1 þ iðγ=2Þσ3�τ3 þm0ðxÞ þm1ðxÞτ1;
ð5Þ

which respects ðσ2τ1ÞhTAII†ðσ2τ1Þ−1 ¼ hAII† . Here, Pauli
matrices σi’s describe the internal degrees of freedom such
as spin. The scaling equations can be obtained in a similar
manner to class A [90]. In this case, one of the Kramers pair
is amplified to the right while the other to the left because
of non-Hermiticity. We then have Gtyp

R =Gc ¼ Gtyp
L =Gc ∼

ðeγL þ e−γLÞe−L=l ∼ eðjγj−1=lÞL for L ≫ l. Thus, the eigen-
states are bidirectionally delocalized in contrast to classes A
and AI†. Without symmetry, one of the transmitted chan-
nels dominates the other, and non-Hermitian delocalization
is unidirectional. Hence, the bidirectional delocalization
arises only in the presence of symplectic reciprocity.
Despite GR ¼ GL, the conductance of one channel serves
as GR and that of the corresponding Kramers partner serves
asGL in the two-parameter scaling shown in Fig. 1, the sum
of which yields the total conductance.
While reciprocity is equivalent to time-reversal sym-

metry T H�T −1 ¼ H in Hermitian systems, this is not the
case in non-Hermitian systems. The corresponding sym-
metry classes with time-reversal symmetry are classes AI
and AII [57]. The universality of non-Hermitian localiza-
tion is also different depending on whether one imposes
time-reversal symmetry or reciprocity. In fact, time-reversal
symmetry does not change the universality of the non-
Hermitian localization [90], whereas reciprocity can
forbid or enhance it as discussed above. Reciprocity also
leads to threefold universality of non-Hermitian random
matrices [94].

Lattice models.—To confirm our nonunitary scaling
theory, we numerically investigate non-Hermitian lattice
models by the transfer-matrix method [90,95]. In general, a
wave function localized around site n ¼ n0 is proportional
to e−jn−n0j=ξLðξRÞ for n < n0 (n > n0). While the two
localization lengths ξL and ξR are equivalent in
Hermitian systems, they are different in a similar manner
to the conductances GL and GR. Figure 2(a)shows the
localization lengths for the Hatano-Nelson model in
Eq. (1). For γ ≥ 0, the right localization length ξR diverges
at a critical point, whereas the left localization length ξL
remains finite, which is a signature of the unidirectional
delocalization. Around the critical point, ξR diverges
as ξR ∝ jγ − γcj−1.
A symplectic extension of the Hatano-Nelson model

is given by Eq. (1) with JR ≔ J − iΔσ1 þ γσ3=2,
JL ≔ J þ iΔσ1 − γσ3=2, and Mn ≔ mn þ hσ3. This lattice
model with h ¼ 0 corresponds to the continuum model in
Eq. (5). In contrast to the original Hatano-Nelson model,
we have ξL ¼ ξR for h ¼ 0 because of reciprocity. As a
result, both ξL and ξR diverge at a critical point [Fig. 2(b)],
which is a signature of the bidirectional delocalization.
Because of the reciprocity-protected nature, the delocal-
ization vanishes even in the presence of a small reciprocity-
breaking perturbation h ≠ 0, which is unique to the
symplectic class.
Chiral symmetry and sublattice symmetry.—In the pres-

ence of chiral or sublattice symmetry, zero modes can be
delocalized even in Hermitian systems in one dimension,
accompanied by Dyson’s singularity [10]. Similarly to
time-reversal symmetry and reciprocity, chiral symmetry
and sublattice symmetry are distinct from each other in

(a) (b)

FIG. 2. Non-Hermitian localization on lattices (L ¼ 5000,
J ¼ 1.0, E ¼ 0). The disordered on-site potential is uniformly
distributed over ½−W=2;W=2�, and each datum is averaged over
1000 samples. (a) Hatano-Nelson model (class A). For γ > 0, the
right localization length diverges at a transition point, whereas the
left localization length remains finite. The transition points are
Wc ¼ 2.22 (γ ¼ 0.4) and Wc ¼ 3.56 (γ ¼ 1.0). (b) Symplectic
Hatano-Nelson model (class AII†; Δ ¼ 0.2,W ¼ 4.0). Both right
and left localization lengths diverge at the transition point
γc ¼ 1.30 (red solid curve). The delocalization vanishes in the
presence of a reciprocity-breaking perturbation h ¼ 0.01 (black
dotted curve).
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non-Hermitian systems, the former (latter) of which cor-
responds to class AIII (AIII†) [57]. For example, a random
hopping model with gain or loss respects chiral symmetry,
while a random asymmetric hopping model respects sub-
lattice symmetry. In the presence of chiral symmetry
τ1h

†
AIIIτ

−1
1 ¼ −hAIII, non-Hermiticity is found not to change

the universality of the delocalization [90]; by contrast, in
the presence of sublattice symmetry τ1hAIII†τ

−1
1 ¼ −hAIII†,

non-Hermiticity enables the unidirectional delocalization in
a similar manner to class A. In fact, the asymmetry between
the valleys is allowed for sublattice symmetry, but for-
bidden for chiral symmetry.
Discussions.—Transport phenomena of disordered sys-

tems, including Anderson localization and transitions,
enjoy universality in various scaling limits that is governed
only by a few physical parameters. This is embodied by the
one-parameter scaling of localization [7,8]. In this Letter,
we have demonstrated that non-Hermiticity breaks it down
and leads to the two-parameter scaling, which generally
describes the unconventional non-Hermitian delocaliza-
tion. While we limit ourselves to the single-channel case
in this Letter, it is meaningful to consider the limit of thick
wires in order to fully uncover universal properties—we
leave this as a future problem.
In our nonunitary two-parameter scaling, the critical

exponents are integers, which contrast with the more
complicated exponents in the two-parameter scaling of
the quantum Hall transition [96–99]. On the other hand,
these two scaling theories share similarities from a topo-
logical perspective. In particular, the Hatano-Nelson model
is characterized by a topological invariant unique to non-
Hermitian systems [52,57]. In our continuum model, this
topological invariant is sgnγ, similar to the Hall conduc-
tivity given by the Dirac mass term. An open problem is
to formulate an effective field theory for the nonunitary
two-parameter scaling, akin to the nonlinear sigma model
augmented with a topological term for the quantum Hall
transition [96–98]. In this regard, it is worth pointing out
that topological field theory descriptions for non-Hermitian
systems have been recently proposed [100].
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