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Current noisy intermediate-scale quantum (NISQ) devices constitute powerful platforms for analog
quantum simulation. The exquisite level of control offered by state-of-the-art quantum computers make
them especially promising to implement time-dependent Hamiltonians. We implement quasiperiodic
driving of a single qubit in the IBM Quantum Experience and thus experimentally realize a temporal
version of the half-Bernevig-Hughes-Zhang Chern insulator. Using simple error mitigation, we achieve
consistently high fidelities of around 97%. From our data we can infer the presence of a topological
transition, thus realizing an earlier proposal of topological frequency conversion by Martin, Refael, and
Halperin. Motivated by these results, we theoretically study the many-qubit case, and show that one can
implement a wide class of Floquet Hamiltonians, or time-dependent Hamiltonians in general. Our study
highlights promises and limitations when studying many-body systems through multifrequency driving of

quantum computers.
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Introduction.—Noisy  intermediate-scale =~ quantum
(NISQ) computers may not yet offer fully fault-tolerant
quantum computing facilities, but they nevertheless con-
stitute a versatile experimental platform with the potential
for fundamental research, small-scale computation or
quantum simulation [1]. The typical model of a quantum
computer is that of a quantum circuit, which is a sequence
of gates applied to the qubits [2]. In principle, the time
evolution of any many-body quantum systems can be
simulated by applying a Trotterization, which turns con-
tinuous time evolution into a discrete local quantum circuit
[3]. This results in a digital quantum simulation, which has
been benchmarked for a range of different models on
existing quantum computers [4—7].

In superconducting circuits, the currently leading tech-
nology, quantum circuits are constructed from a set of
available gates, which correspond to a set of carefully
calibrated microwave pulses applied to its input ports [8].
The abstraction into quantum circuits hides the complexity
of the underlying many-body system, whose continuous
evolution offers exciting directions in analog quantum
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simulation [9,10], which potentially incurs significantly less
overhead. This perspective has been explored in a series of
theoretical and experimental works [11-15]. If the intrinsic
many-body nature of quantum computers is combined with
the capacity to apply essentially arbitrary drives, they may
serve also as powerful analog quantum simulators for very
large classes of time-dependent Hamiltonians.

The evolution under time-dependent Hamiltonians is
incredibly rich and exhibits many novel phenomena, even
at the level of individual qubits. A particular example is the
temporal topological transition that occurs in the presence
of quasiperiodic driving, theoretically predicted by Martin,
Refael, and Halperin in 2017 [16]. Using a Floquet treat-
ment of the driven qubit, the dynamics is related to the
properties of a two-dimensional lattice model, the half-
Bernevig-Hughes-Zhang (BHZ) Chern insulator [17]. As a
function of time, the driven qubit explores the whole
Brillouin zone, which causes the work done by the two
drives to be quantized and proportional to the integer Chern
number, which is determined by the parameters in the
drives. Recently, temporal topology has been classified,
analogously to the classification of topological insulators
[18], and extension to larger systems, such as spin-
resonator systems [19], or two-qubit systems with inter-
actions [20] have been proposed. While quasiperiodic
driving typically maps to systems without boundary, one
can, in principle, also introduce boundaries through quan-
tum feedback [21].

Published by the American Physical Society
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In this work we experimentally demonstrate this tem-
poral topological behavior of a single qubit on an existing
quantum device, using continuous driving, implemented
with the fine-grained access offered by QISKIT pulse [22].
Choosing a specific driving with two incommensurate
frequencies, we observe a topological transition in the
temporal dynamics of the qubit, finding good agreement
with simulations. Despite achieving high fidelities of
around 97% after error mitigation, the Chern number
inferred from the measured frequency conversion shows
much larger errors. We develop a simple noise model that
explains and reproduces this effect.

Motivated by this experiment, we theoretically derive the
class of Hamiltonians that can readily be implemented on
state-of-the-art quantum computers. As one concrete exam-
ple, this offers an exciting perspective to study strongly
interacting Floquet systems [23-27] with an exquisite level
of control. Site-selective control as well as high-fidelity
single-site readout confers quantum computers certain
advantage over other quantum simulators based on light
[28] or ultracold atoms [29], making them ideally suited for
the analog quantum simulation of generic many-body time-
dependent Hamiltonians.

Theoretical description.—In quantum computers based
on superconducting transmonlike qubits [30,31], the
Hamiltonian describing a single qubit can be cast in the
form of a Duffing oscillator with driving

H(t) = wpa’a + Ua'a’aa + (a +a")D(1). (1)

The qubit frequency is denoted @, and U quantifies the
anharmonicity that separates the lowest two levels that
define the qubit from the higher levels of the super-
conducting circuit. The ideal drive signal is parametrized
as [22]

Qmax

D(1) = 5

Refef (1)) @

where Q.. denotes the maximum Rabi frequency attain-
able in the system, and w, + A, is the carrier frequency.
In the following, we choose the detuning A.=0.
Anticipating our later interpretation as a spin-1/2 particle
in a time-dependent field, we parameterize the dimension-
less drive shape d(t) € C,|d(t)| <1 in terms of the
dimensionless magnetic field &, (f) = h,(t) + ih,(7)

A0 =R Oepip(t).  $0) =20 [Ee(t)ar.

(3)

To treat the system as a qubit, the maximum drive
strength needs to be much weaker than the anharmonicity
Qax < U. Assuming this is fulfilled, applying a
rotating-wave approximation and passing into a frame

rotating with respect to the time-dependent Hamiltonian
H_(1) = (wy/2 — h,(t))o,, we rewrite Eq. (1) as [32]

Hgin(1) = (1) - 3. (4)

Note the subtlety in the chosen rotating frame. Instead of
changing the qubit frequency in the lab frame, we repar-
ametrize time by passing into a rotating frame with respect
to H_(t). This constitutes a continuous version of virtual Z
gates [35].

Topological frequency conversion.—Given Eq. (4), we
can now realize the proposal by Martin et al. [16]. We apply
the quasiperiodic time-dependent magnetic field

H(t) = n{sin(wt + ¢y )0, + sin(w,t + ¢,)o,
+ [M = cos(@t + ¢y) — cos(ayt + ¢r)]o ), (5)

where the ratio w,/w; should be irrational. In the follow-
ing, we set w,/w; = (1 ++/5)/2. We consider the model
in the strong drive limit, i.e., # > w;, ®,. In this limit, a
Floquet ansatz reveals a direct connection to the two-
dimensional half-BHZ Chern insulator [17] with a constant
electric field applied [16,32]. In the strong-drive limit, the
electric field is weak and leads to a slow adiabatic
evolution of the initial wavepacket through the Brillouin
zone. During this evolution, which explores the whole
Brillouin zone, the system effectively measures the Chern
number, which results in a topologically quantized energy
pumping rate from one drive to the other [16]

(Wl W2) _ C, (6)
w0, T
where W; is the work done by the ith drive, defined below
[Eq. (8)]. As a function of M, the system undergoes a
topological transition in which the Chern number changes.

To determine the pumping rate experimentally, we
measure the work done by each of the drives. If we first
split the Hamiltonian into the two contributions from each
drive,

H(t) = hy(t) + ha(1) + 1Mo, (7)

then the work done by each drive over a period 7 is given
by

wir) = [ awio) P4

¥(1)), (8)

where |W(r)) is the state of the qubit at time ¢
evolving under the time-dependent Schrédinger equation
i0,|¥(1)) = H(r)|¥(r)), where |¥(r = 0)) is chosen to be
an instantaneous eigenstate of H (¢ = 0).
Experiment.—OQOur experimental protocol consists of four
main pulse sequences. First, we initialize the qubit in the
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instantaneous eigenstate of Hamiltonian Eq. (5) at t = 0.
This is achieved using an IBM calibrated pulse sequence to
perform a general qubit rotation. Second, the main pulse
sequence implements the time-dependent Hamiltonian (5),
with the drive parametrized as in Eq. (2). We perform
experiments with different drive lengths of up to 20 us to
obtain 800 data points. Third, we apply an IBM calibrated
pulse to change the basis. For each drive length, we rotate
into the X, Y, and Z bases in order to perform full state
tomography. Finally, we perform single-shot projective
measurements of the qubit using an IBM pre-calibrated
readout pulse sequence. We average over 8192 shots for
each observable corresponding to a statistical error of
approximately 1%.

We fix w, = pw;, where ¢ = (1 ++/5)/2 is the golden
ratio. Ideally, we would be like to set the ratio w; /5 as small
as possible, to get as close as possible to adiabatic
evolution. However, due to the finite coherence time
72 100 us of the IBM Q device, we must choose
o7! < 7. In terms of the maximum Rabi frequency
Q. ax» We choose 1 = 0.9Q,,.,, in order to avoid driving
transitions to higher excited states. Using numerical sim-
ulations we found the best compromise was to choose a
total simulation time of 20 us and set w; = 0.125#, which
corresponds to wj!' ~240 ns. In order to improve the
fidelity of our results we start the drive with a linear ramp
of the drive frequencies @, @, over a period of 444 ns. This
reduces transient effects and reduces high-frequency Rabi
oscillations seen in the simulation results. The single-qubit
IBM device we used, codenamed armonk, had qubit
frequency wy ~ 4.97 GHz and maximum Rabi frequency
of Q .« ~36.9 MHz.

With the above experimental protocol we measure the
observables in the frame rotating with the qubit frequency.
Since the Hamiltonian Eq. (4) is only realized in a given
time-dependent reference frame, we must additionally
perform a virtual-Z rotation, which we achieve by post-
processing the data to apply the rotation

<6x>r0tating = COS8 ¢(t) <6x> + sin ¢(t) <O-y>7
{0y )rotating = — sin (1) (o) + cos p(1){oy).  (9)

where ¢(t) is given in Eq. (3). When post-processing the
data, we additionally mitigate some of the errors due to
decoherence and measurement error by projecting the
measured qubit density matrix onto the Bloch sphere.
We find that this method of error mitigation improves
quantitative agreement with numerical simulations in all
cases we considered. This effectively removes the effects of
the dominant depolarizing channel [36]. With this error
mitigation strategy, the average fidelity across all experi-
ments is 0.971 (excluding M = 1.7, 2.3 due to strong
diabatic effects that arise due to the proximity to the gap
closing at M = 2 [32]).
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FIG.1. Tomography data for M = 1, w; = 0.125. The top three

panels compare experimentally measured Pauli expectation
values against exact numerical simulation. We also show the
purity of the measured state, which we fit by the function
1/2 + ae™"/*, where a =0.387 and A~ 109 us is compatible
with the device coherence time as measured by IBM. Note that
a < 0.5 as the measurement sequence take a finite time, such that
the qubit has lost purity even when the simulation time is zero.
The bottom panel shows the fidelity F = |(y|¢)|*> between the
measured state projected onto the Bloch sphere, |w), and the
numerically simulated state, |¢). We fit the fidelity with ae~"/¢,
where a ~ 0.99 and & ~ 2.71 ms, which verifies the effectiveness
of error mitigation by projecting onto the Bloch sphere.

The experimental tomography data is shown in Fig. 1 for
M =1, which closely matches the exact numerical simu-
lation. From this data we can also compute the purity of the
measured state Tr(p?), also shown in Fig. 1. The measured
purity is less than one due to decoherence over the course of
the experiment along with the significant ~3% measure-
ment error. Fitting the purity with an exponential decay, we
extract a decoherence time of A ~ 109 us (at M = 1), which
is consistent with the 7', T, 2 100 us decoherence times
measured by IBM.

Results.—To obtain the work done by each drive [Eq. (8)],
we first compute (dh;(t)/dt) = dh;(t)/dt- (c) from the
data. We then perform the integration in Eq. (8) numerically.
Figure 2 shows the experimental results for the work done,
for the case of M = 1. This corresponds to a phase of the
BHZ model with Chern number C = —1, resulting in an
average linear decrease (increase) of W, (W,). The exper-
imental results are in good quantitative agreement with
numerical simulations. Furthermore, by fitting a linear curve
to this data using least-squares regression, the slope is in
close agreement to that predicted by Eq. (6).

Figure 3 shows the extracted Chern number for a range
of values of M, compared against numerical simulations of
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FIG. 2. Work done by the two incommensurate drives, calcu-
lated using Eq. (8). The experimental data for M = 1, w; = 0.125
measured at 800 points is compared with a numerical simulation
of the same setup. The experimental data is fitted with a line
(colored dashed lines) using least-squares regression, for which
the 95% confidence interval for the slope is shown as the colored
region. The expected slope is shown as black dashed lines.

the same setup as well as the ideal result in the strong-drive
limit. We find reasonable quantitative agreement with the
simulations. Furthermore, the transition between different
phases with different Chern number is clearly visible in the
experimental data. Beyond the extracted value of the Chern
number, the qualitative difference between the phases with
M| <2 and |[M| > 2 is clearly seen by considering the
portion of the Bloch sphere covered under time evolution,
shown inset Fig. 3. For |M| < 2 we observe that the state of
the qubit explores the full Bloch sphere under the dynamics
of Eq. (5) reflecting that the surface traced by the time
dependent state has nontrivial winding around the origin
and hence non-zero Chern number. When |M| > 2 the state
of the qubit is instead restricted to either the north or south
hemisphere of the Bloch sphere and does not wind around
the origin and the Chern number is zero.

While overall the agreement is good, the error in the
measured Chern number exceeds the error predicted by the
fidelity considerably. We find that this can be explained by
a simple error model, in which we take the state predicted in
the ideal scenario and randomly perturb its direction on the
Bloch sphere to reproduce the measured distribution of
fidelities with average 0.971 [32]. Note that the perturba-
tions at data points corresponding to different times are
independent, as they correspond to different experimental
runs. This perturbation translates into an error in the
measured Chern number, whose standard deviation we
plot as a shaded region in Fig. 3. This shows that a error rate
consistent with experimental data explains the large errors
in the extracted Chern number.

Extension to qubit arrays.—In view of the vast research
effort in Floquet matter, the question is pertinent whether
the presented scheme generalizes to several qubits. To
answer this question we must be aware that the coupling
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FIG.3. Experimentally extracted Chern number as a function of
M. The Chern number is extracted from the linear least-squares
regression fit to the work done by each drive, and using Eq. (6).
The error bars correspond to the 95% confidence intervals for the
fit. The experimental data are compared against the numerical
simulation of the same setup (blue dots) and with the exact value
of the Chern number for the corresponding phase of the BHZ
model (dashed black curve). The shaded blue region corresponds
to a simple heuristic error model based on the average fidelity
0.971 of the error mitigated experimental data [32]. This error
model confirms that the comparatively large deviations of the
measured Chern number that we observe are produced already
from low loss in fidelity (=3%). Insets show the distribution of
experimental data on the Bloch sphere under dynamics for M = 1
and M =3, illustrating qualitative differences of the time
evolution in each of the two phases |M| < 2 and |M| > 2.

between two qubits can be engineered in many ways, as
one can choose between direct capacitive or inductive
coupling, or indirect coupling via a resonator [37-41].
Indeed, alternative approaches have been taken by IBM
(see, e.g., Ref. [42]) and Google [43], with each imple-
mentation having their own (dis-)advantages.

We consider two cases in particular. The first is when
both qubit frequencies and their coupling is fixed, which
is relevant for the devices developed by IBM. In this
case, the coupling has to be engineered with time-
dependent driving of the qubits in order to implement
resonant processes to second order in the Hamiltonian
[44-46]. This technique produces tuneable XZ,YZ, ZX,
and ZY interactions, which are used to engineer CR
gates [45,47]. Implementing a similar single-qubit driv-
ing as before, and passing into a time-dependent refer-
ence frame, we derive an effective Hamiltonian of the
form [32]

Hl([?t) = Zgij(t)6§i>0(+j) +H.c. (10)
(ij)

On bipartite lattices, a (virtual) rotation of every second
spin maps this to either an Ising interaction or (in general
anisotropic) XY interactions, making this technique very
versatile. A drawback is that the Hamiltonian (10) is
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obtained to second order in the original Hamiltonian and
by neglecting quickly rotating terms. It is thus an
approximation and care has to be taken that all the steps
in its derivation are valid. Nevertheless, these conditions
can usually be fulfilled through careful choice of the
driving parameters. It may further be possible to actively
counteract unwanted effects from this approximation,
analogous to the DRAG scheme used to improve the
fidelity of digital quantum gates [8].

If tunable interactions are available and the qubits can
be brought into resonance [43], the driving scheme is
simplified and one readily arrives at the general spin
Hamiltonian

Haay (1) = >_1(1) -39 + Y g (0)(6l oV + 6oy
i (i)

(11)

with a magnetic field along z that takes the form

h (1) = ho(1) + wi(1) - @y, (12)

where w; are the qubit frequencies and w, is some
arbitrarily chosen reference frequency. We note that tunable
qubit frequencies feature in many implementations
[48-51], but not in all [52]. In the latter case—of fixed
qubit frequencies but tunable interactions—one option
might be to drive each qubit with a far off-resonant drive
to induce an drive-strength-dependent ac Stark shift.

When taking into account the second excited state of each
qubit, the qubit array Hamiltonian (11) maps to a Bose-
Hubbard model with time-dependent hopping and freely
tuneable site-dependent drive and disorder. We note that the
interpretation as a (time-independent) Bose-Hubbard model
has enabled the experimental measurement of microscopic
features of the many-body localized phase [13]. Moving to
periodically varying hoppings could allow one to study
many-body Floquet models and implement quench and ramp
experiments from carefully prepared initial states.

Discussion.—While our experiment showcases some of
the promises of analog quantum simulation with time-
dependent Hamiltonians, it also highlights some
of the difficulties that need to be overcome on the way.
Concretely, the experimental results shown in Fig. 3 would
improve with greater coherence time of the qubit, as this
would allow us to reduce the modulation frequencies
and @, in the Hamiltonian, which in turn would improve
the strong-driving and adiabatic-modulation approxima-
tions. This is particularly important close to the topological
transition at M = 2 where the gap closes and adiabatic
evolution thus requires increasingly long timescales.

In this specific experiment, we also encountered the
problem that the measured experimental signature is
sensitive to even small amounts of noise. Recently,
Boyers et al. [53] demonstrated experimental measurement

of the Chern number in the same model using a nitrogen
vacancy centre. They determined the Chern number by
measuring the Berry curvature directly, whereas here we
extract the Chern number from the topological pumping as
originally proposed. As a result, they did not observe the
substantial errors in the extracted Chern number that we
found. Nevertheless, as we have demonstrated, the tempo-
ral topological nature of the qubit time evolution can clearly
be extracted despite experimental shortcomings. With the
current progress in superconducting-qubit technology, we
expect that our understanding and the fidelity of available
quantum computers to increase rapidly, allowing for more
complex experiments, in particular with more qubits.

Going beyond (quasi)periodic driving, the capability
to engineer time-dependent many-body Hamiltonians
offers many exciting perspectives to investigate non-
equilibrium physics. For example, ramping through a
quantum phase transition might allow one to study
Kibble-Zurek scaling or in general the dynamics of
phase transitions such as the superfluid to Mott insulator
transition [54]. Slow variation could also be used to
explore adiabatic algorithms and departures from them.
Many-body non-equilibrium physics is notoriously dif-
ficult to study with classical computers and this is
therefore a prime area of applicability for quantum
simulators. Noisy intermediate-scale quantum computers
offer a versatile combination of single-site control and
readout, and large enough system sizes, and thus promise
to support and complement analytical and computational
approaches to understand many-body nonequilibrium
physics. As we have demonstrated with the single-qubit
experiment, this is a realistic outlook.

All of the data presented in this Letter, along with the
python code used to generate these data and the figures in
this Letter, can be found in a public repository [55].
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