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Anyons with arbitrary exchange phases exist on 1D lattices in ultracold gases. Yet, known continuum
theories in 1D do not match. We derive the continuum limit of 1D lattice anyons via interacting bosons. The
theory maintains the exchange phase periodicity fully analogous to 2D anyons. This provides a mapping
between experiments, lattice anyons, and continuum theories, including Kundu anyons with a natural
regularization as a special case. We numerically estimate the Luttinger parameter as a function of the
exchange angle to characterize long-range signatures of the theory and predict different velocities for left-
and right-moving collective excitations.
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Acquiring “any phase” when spatially exchanged [1,2],
anyons break the dichotomic classification of quantum
particles into bosons and fermions. Anyons have inspired
theoretical and experimental physicists for decades [1–11].
Recently, scientific and technological interest increased
again because of possible applications of non-Abelian
anyons in topological quantum computing [12,13] and
the apparent detection of Majorana zero modes [14–17].
Even though anyons are often considered to be exclusively
two dimensional, they have also been discussed in a wide
range of one-dimensional (1D) systems that differ strongly
in phenomenology [18–27].
In 2D, Abelian anyons can exist because the possible

continuous exchange of two indistinguishable particles
provides topological nontriviality at a fundamental level.
The wave function of two anyons acquires a phase factor eiθ,
where the angle θ specifies the commutation up to a 2π
periodicity. In 1D, the situation is more involved because
particles cannot directly be exchanged without collision.
This is only circumvented by networklike geometries [28],
additional degrees of freedom [29], or measurement-based
protocols [30]. Historically, several notions of one-
dimensional anyons have emerged that are a priori dis-
connected to 2D anyons. As a fundamental approach,
Leinaas and Myrheim have classified indistinguishable
one-dimensional particles by generalized boundary condi-
tions in terms of a statistical parameter −∞ < η ≤ ∞ [2]. In
the mathematically equivalent Lieb-Liniger model of inter-
acting bosons [31,32], the statistical parameter is given by
the bosonic on-site interaction, and hence differs strongly
from a 2π-periodic exchange phase eiθ. Another approach to
anyonic exchange in 1D is to consider a discontinuous jump
in the wave function when two particles pass each other. This
insight was used by Kundu, who proposed an integrable
bosonic model on a continuum 1D system containing

derivatives and squares of delta functions [33] as a model
for 1D anyons. However, the bosonic form of the Kundu
model is not 2π periodic in the statistical parameter either.
In contrast to the aforementioned continuum theories, a

2π-periodic model of anyons is constructed on a 1D lattice
by anyonic creation and annihilation operators with the
generalized commutation relation which ensures

aia
†
j − e−iθsgnði−jÞa†jai ¼ δi;j; ð1Þ

that the particles acquire an anyonic phase factor eiθ under
exchange analogous to Abelian 2D anyons. Here, sgnðjÞ ¼
j=jjj and sgnð0Þ ¼ 0. These lattice anyons of the so-called
anyon Hubbard model attracted significant attention due to
several proposals to realize it in optical lattices filled with
ultracold bosons or fermions [34–42] and promising
developments of artificial gauge fields and induced phase
transitions by time-periodic forcing [43–55]. In particular,
the anyonic exchange phase can be realized by an
occupation-dependent Peierls-like phase using assisted
Raman tunneling [34,35] or periodically modulated lattices
[36–38]. While these lattice anyons faithfully recover the
exchange phase from their two-dimensional continuous
counterparts, this discrete construction sidesteps the most
interesting aspects of anyon physics: The continuous
exchange of two particles. To our knowledge, the relation
between 1D Leinaas-Myrheim particles, the Kundu model,
and the experimentally accessible lattice anyons has up to
now been an open problem. In particular, no corresponding
bosonic continuum Hamiltonian exists that is 2π periodic in
the anyonic exchange angle.
In this Letter, we provide the continuum theory of the

anyon Hubbard model. We thereby obtain an explicit
mapping between experiments on one-dimensional bosonic
lattices, lattice theories of anyons, and general theories in
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the continuum, including Kundu anyons as a special case.
Deriving a naive long wavelength limit is insufficient.
Instead, it is necessary to use the bosonic form of the
Hamiltonian and to consider all orders of the phase angle.
This leads to a statistically induced current density as well
as two- and three-particle interactions, but as a reward
results in the 2π periodicity in the anyonic phase angle even
in 1D. We emphasize that the bosonic form of the
Hamiltonian is experimentally directly accessible, in stark
contrast to the purely anyonic description, which encodes
the topological character of the exchange implicitly in the
creation algebra or the boundary conditions of the wave
functions. Additionally, the bosonic form facilitates theo-
retical calculations, since the anyonic exchange algebra is
not preserved under unitary transformations. We further-
more provide numerical results using the density matrix
renormalization group (DMRG) algorithm to illustrate how
the continuum limit is approached and discuss the impli-
cations for the effective low-energy Tomonaga-Luttinger
liquid theory. Non-Abelian extensions or unitary braided
fusion categories and corresponding diagrammatic equa-
tions of anyon theories [12,56] are interesting prospects for
future research and not discussed here.
Our starting point is the anyon Hubbard model on a 1D

lattice with L sites [34]

H ¼ −J
XL−1
j¼1

ða†jajþ1 þ H:c:Þ þ U
2

XL
j¼1

njðnj − 1Þ; ð2Þ

where the anyonic operators obey the algebra in Eq. (1) and
nj ¼ a†jaj is the particle number operator. Bosons are
described by this model at θ ¼ 0. For θ ¼ π the on-site
quantum brackets Eq. (1) remain bosonic, so that so-called
pseudofermions are originally included. Yet, as we show
below, the low-density continuum limit captures the behav-
ior of ordinary fermions as well. The anyon Hubbard model
breaks spatial inversion symmetry and time reversal sym-
metry but obeys a generalized inversion symmetry [57],
that is reduced to the combined action of time reversal and
spatial inversion in the below continuum theories; for
details, see the Supplemental Material [58]. By the
Jordan-Wigner transformation [34]

aj ¼ eiθ
P

k<j
nkbj; ð3Þ

the relations in Eq. (1) can be exactly represented by
bosonic operators bj using the Hamiltonian

H ¼ −J
XL−1
j¼1

ðb†jeiθnjbjþ1 þ H:c:Þ þ U
2

XL
j¼1

njðnj − 1Þ: ð4Þ

Here, the hopping depends on the occupation number in
form of a Peierls-like factor eiθnj, which plays a central role
for experimental realizations [34–38,55]. Interestingly, the

Hubbard interaction njðnj − 1Þ is independent of the any-
onic phase because nj ¼ a†jaj ¼ b†jbj. In the continuum
limit, it leads to a simple two-body interaction term [59,60],
which can be added to the effective interaction terms arising
from the anyonic exchange derived in the following.
The continuum limit is defined as a process of a

systematic renormalization of all terms when reducing
the lattice spacing d with increasing number of sites L
such that the physical length l ¼ Ld remains finite.
Following the procedure of Ref. [59], the bosonic field
operator in the continuum is

Ψ†
BðxÞ ¼ lim

d→0
b†j=

ffiffiffi
d

p
; ð5Þ

which results in the bosonic commutator

½ΨBðx̃Þ;Ψ†
BðxÞ� ¼ lim

d→0

δi;j
d

≡ δðx − x̃Þ: ð6Þ

Because of the delta function, it is important that all
expressions are normal ordered before taking the con-
tinuum limit in order to avoid divergences. Furthermore, we
expand the bosonic operator as

ΨBðxþ dÞ ≈ ΨBðxÞ þ d∂xΨBðxÞ þ
d2

2
∂2
xΨBðxÞ; ð7Þ

since higher orders renormalize to zero in the continuum
limit. In order to keep the full dependence on the anyonic
phase angle θ, it is crucial to express the Peierls-like factor
in normal ordered form, which is possible to all orders
according to [61]

eiθnj ¼
X∞
q¼0

ðiθÞq
q!

nqj ¼
X∞
q¼0

ðiθÞq
q!

Xq
m¼0

Sðq;mÞðb†jÞmðbjÞm;

ð8Þ

where Sðq;mÞ are the Stirling numbers of second kind [62].
Taking the continuum limit according to Eqs. (5) and (7),
we observe that each operator bi carries a factor of

ffiffiffi
d

p
and

each derivative a factor of d, which yields an overall scale
Jd2 ¼ ℏ2=2meff that is set to unity in the following. By
neglecting higher powers in d and resumming the Peierls-
like factor in Eq. (8), we finally obtain the Hamiltonian in
the continuum limit

Hcont ¼
Z

dx ½HkinðxÞ þHintðxÞ þHJðxÞ�; ð9Þ

with
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HkinðxÞ ¼ ∂xΨ
†
BðxÞ∂xΨBðxÞ;

HintðxÞ ¼ ½V2ðθÞ þ c�∶ρ2BðxÞ∶þ V3ðθÞ∶ρ3BðxÞ∶;
HJðxÞ ¼ VJðθÞ∶ρBðxÞJBðxÞ∶; ð10Þ

where JBðxÞ ¼ −i½Ψ†
BðxÞ∂xΨBðxÞ − H:c:� is the current

operator, ρBðxÞ ¼ Ψ†
BðxÞΨBðxÞ the density operator, and

∶ � � � ∶ denotes normal order. The parameter c is related to
the Hubbard interaction U ¼ 2Jdc, and we have further-
more dropped the energy dependence on the total density
ρ0 ¼ N=Ld, since the particle number N is a conserved
quantity. The coupling constants of the theory are

VJðθÞ ¼ Im½Ṽ2ðθÞ� ¼ − sinðθÞ; ð11Þ

V2ðθÞ ¼ −2d−1Re½Ṽ2ðθÞ� ¼ 2d−1½1 − cosðθÞ�; ð12Þ

V3ðθÞ ¼ −Re½Ṽ2ðθÞ2� ¼ 1þ 2 cosðθÞ − cosð2θÞ; ð13Þ

with Ṽ2ðθÞ ¼ 1 − eiθ. The two-body interaction V2ðθÞ and
the rescaled Hubbard interaction c ¼ U=ð2JdÞ strongly
renormalize when d → 0 if θ ≠ 0, which is known to occur
also for the ordinary Fermi-Hubbard and Bose-Hubbard
interaction U in the continuum limit [59,63]. In the
Hubbard model this can be resolved by rescaling U with
the overall density, leading to a renormalized theory which
recovers the so-called Tonks-Girardeau limit with infinitely
strong interactions for low densities [64,65]. However, in
the anyonic theory, the angle θ cannot simply be rescaled or
renormalized without changing the anyonic phase angle,
which would violate the topological character. As we see
below, and justified by our numerical results, the depend-
ence on the lattice spacing d allows us to define regularized
coupling constants, which are fixed by experimental
parameters. Moreover, we recognize a current-density
interaction potential VJ and a three-body interaction V3,
so that the full theory cannot be derived by only consid-
ering two-particle scattering processes.
We furthermore observe that the resulting bosonic model

in Eq. (9) has the same structure as the integrable Kundu
model [33] albeit with different coupling constants. The
Kundu model is described by

VKundu
J ðθÞ ¼ −θ; ð14Þ

VKundu
2 ðθÞ ¼ θ2

Z
dx δ2ðxÞ þ c; ð15Þ

VKundu
3 ðθÞ ¼ θ2: ð16Þ

Up to second order in θ, the parameters in Eqs. (14)–(16)
recover the anyonic Kundu model [33]

HK ¼
Z

∞

−∞
dx ∂xΨ

†
AðxÞ∂xΨAðxÞ

þ
Z

∞

−∞
dx cΨ†

AðxÞΨ†
AðxÞΨAðxÞΨAðxÞ: ð17Þ

Here, the anyonic operators ΨA are related to the bosonic
ones ΨB by the continuum version of the Jordan-Wigner
transformation [33]

ΨAðxÞ ¼ eiθ
R

x

−∞
nðyÞdyΨBðxÞ; ð18Þ

where n ¼ Ψ†
BΨB. This relation naively looks like a

straightforward continuum limit of Eq. (3), but such an
approximation does not capture the full topological char-
acter since the crucial symmetry θ → θ þ 2π is lost.
By comparing the coupling constants, we see that the

Kundu model HK corresponds to the special case of small
anyon angles θ in the continuum model Hcont in Eq. (9).
Moreover, the singular behavior of a double delta function
is replaced by the 1=d divergence of V2 in Eq. (12).
Therefore, our derived continuum model is more general
and introduces a well-defined limiting procedure how the
controversially discussed [66,67] double delta function in
the original Kundu model must be interpreted. Namely, we
find that one has to extrapolate the experimental results
when lowering the lattice spacing d toward zero while
keeping Ld finite. Obviously, changing d directly is
difficult in an optical lattice, but it is possible to reach
this limit by noting that the density ρ0 ¼ N=Ld remains
finite in the continuum limit. For a given density ρ0, the
continuum limit can then be effectively achieved by
extrapolating d ¼ N=Lρ0 → 0 by systematically lowering
the number of particles per site N=L.
We illustrate this procedure by means of a numerical

experiment using the DMRG algorithm [68], which is a
powerful tool to analyze the properties of the proposed
continuum theory in Eq. (9). We simulate noninteracting
anyons by bosons with an occupation-dependent hopping
in the continuum limit of Eq. (4) with U ¼ 0 using up to
500 DMRG states in finite systems with fixed boundary
conditions at the edges. For the values of θ and the
relatively low densities used for the simulations below,
we find that the numerical restriction to at most two bosons
per site gives good results. It is well established that the
local density can be considered as a convenient observable
to analyze the interaction strength in 1D [36,69–73], since
characteristic density oscillations develop near the edges
due to collective modes, which ultimately are related to
Friedel oscillations in the fermion limit [74]. An interacting
bosonic gas gradually develops density oscillations near
edges [60] that grow with increasing interactions and with
decreasing densities analogous to the Fermi-Hubbard
model [73].
In Fig. 1(a), we see that the corresponding density

oscillations in a noninteracting anyon gas grow with θ,
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which plays the role of an effective interaction as expected.
Using N ¼ 5 particles and L ¼ 50 sites, the density waves
gradually build up with increasing values of θ. Keeping
θ ¼ 0.5π fixed in Fig. 1(b), we observe how the character-
istic oscillations steadily increase with lower densities. We
see that choosing a small but finite density N=L creates a
natural cutoff similar to choosing a finite d in the
bosonization procedure to renormalize diverging terms in
impurity problems [75].
In order to understand the oscillations on a more

quantitative level, we derive the corresponding
Tomonaga-Luttinger liquid (TLL) theory [76] describing
the low-energy excitation of interacting bosons. Using the
phase-density representation of the bosonic fields from the
harmonic fluid approach [77,78] for the interactions of
Eq. (10), we immediately arrive at a TLL Hamiltonian
together with a special parity-breaking interaction Δ [58]

Hcont ≈
u
2π

Z
dx

�
1

K
ð∂xϕÞ2 þ Kð∂xΘÞ2 þ Δ∂xϕ∂xΘ

�
;

ð19Þ

where energy shifts due to conserved quantities
(total current and density) have again been omitted [58].
The dependence of the Luttinger parameter K, the
Fermi-velocity u, and the interaction Δ on the para-
meters c, V2, V3, and VJ can be read off to lowest
order π2=K2 ¼ ðV2 þ cÞ=ρ0 þ 3V3, u ¼ 2πρ0=K, and
Δ ¼ 8ρ0VJ=u. But note that the corresponding expressions
from the harmonic fluid approach are known to be only
reliable for very small coupling constants [78,79], i.e., for
small θ and c. Therefore, other methods are required to
obtain a quantitative estimate of K for all θ as discussed
below. The nontrivial interaction Δ has interesting physical
consequences. Under spatial parity inversion, the fields
transform ∂xϕ → ∂xϕ and ∂xΘ → −∂xΘ [80], so this
interaction can be traced back to the parity-breaking nature
of the anyonic description. However, the Δ term is not
affected by the Luttinger rescaling of the fields ϕ →

ffiffiffiffi
K

p
ϕ

and Θ → Θ=
ffiffiffiffi
K

p
and becomes diagonal using the known

mode expansions in terms of collective density waves [78]
as shown in the Supplemental Material [58]. So no
additional transformation is required. Therefore, the
vacuum and the excitations of a TLL are preserved, but
the interaction Δ leads to different velocities and
energies of left- and right-moving density excitations
ϵq ¼ ½uþ ΔsgnðqÞ=2�jqj, which becomes relevant for
time-dependent correlations [58].
In order to provide a quantitative estimate of the

Luttinger parameter K for all θ, the numerical data in
Fig. 1 prove useful. It is known that the long-range decay of
the oscillations away from the edges is governed by a
power law [69,70], where the exponent, for spinless
models, is the Luttinger parameter K [71]. In particular,
the oscillations in the local density of a finite-size TLL
follow the analytic expression [73,78,81]

nj=d ≈ ρþ A cos ½2ρπðjd − l=2Þ�
�
l sin

πjd
l

�
−K

; ð20Þ

where ρ is the average density near the middle of the chain
l=2≡ ðLþ 1Þd=2. For the ground state expectation value
of nj the parity-breaking interaction Δ does not contribute
[58]. As shown in Fig. 1, Eq. (20) describes the local
density very well for all θ > 0 and results in a nontrivial
exponent K which approaches unity for small densities and
θ → π. The fits are spatially limited by a cutoff distance
from the edges, which indicates the range of validity of the
TLL theory. Notably, the cutoff distance increases with the
Luttinger parameter K. It hence becomes increasingly
difficult to describe weaker oscillations, but the data are
still consistent with the expected behavior of free bosons
K → ∞ for θ → 0, see inset of Fig. 1(a). In the opposite

(a)

(b)

FIG. 1. DMRG results for the local particle density nj=d.
(a) For a chain of L ¼ 50 sites with N ¼ 5 anyons with different
θ. (b) For θ ¼ 0.5π and a chain length L ¼ 100 the Friedel
oscillations increase with decreasing particle number N. Solid
lines are fits to power-law-decaying oscillations in Eq. (20), from
which the Luttinger parameters K are extracted (insets).
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limit of θ ¼ π, the solid line in Fig. 1(a) is given by the
analytic expression for free fermions [73] over the entire
system, which means that the pseudofermions are well
described by ordinary fermions with K ¼ 1, in this case
[35,36]. The TLL parameter in the insets of Fig. 1
determines relevant long-range correlations [76] including
energy-dependent quantities like the local density of states
[82]. The numerical data therefore not only confirm the
stability of a TLL ground state but also predict the
dominant correlations of the continuum anyon model
quantitatively as a function of θ and ρ0. In experimental
setups, the confinement is commonly given by a harmonic
trap, which also gives rise to density oscillations [60]
described by corresponding fit functions [83]. Thus,
experimental measurements of the local densities [84] in
optical traps can be used to extract these characteristic
exponents.
In conclusion, capturing the essential feature of a 2D

anyonic exchange phase by 1D anyons on a lattice inspired
our development of a continuum theory of 1D anyons in
terms of interacting bosons, which keeps the topological
character of Abelian anyonic exchange in contrast to
previously discussed Hamiltonians in 1D. The representa-
tion of anyons as normal ordered bosons with modified
hopping is crucial when taking the continuum limit. We
take all orders of the anyonic phase into account, resulting
in a Hamiltonian that includes current density as well as
two- and three-particle bosonic interactions with 2π-peri-
odic coefficients in the anyonic phase angle. The descrip-
tion of 1D continuum anyons, that captures this topological
hallmark, solves an open problem and the theory extends
the two-dimensional concept of a 2π-periodic anyonic
exchange phase to 1D. The known Kundu model is
contained in the limit of a vanishing statistical angle.
Our work therefore uncovers a unifying, physically moti-
vated continuum theory of one-dimensional Abelian any-
ons that derives from the original idea of an anyonic
exchange phase in 2D. We thereby connect recent experi-
ments on ultracold atomic gases to the seminal consid-
erations of Leinaas and Myrheim as well as Wilczek, which
inspired the name “anyon” [1]. In physical systems, we
quantitatively predict the appearance of characteristic
density oscillations, which reflect the TLL correlations.
Our studies also show that a hallmark of anyonic physics
are different velocities of left- and right-moving density
excitations, which could be observable in dynamic experi-
ments on the structure factor or time-dependent correla-
tors [58].
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