
 

Probing the Symmetry Energy with the Spectral Pion Ratio

J. Estee,1,2,* W. G. Lynch ,1,2,† C. Y. Tsang,1,2 J. Barney,1,2 G. Jhang,1 M. B. Tsang,1,2,‡ R. Wang,1 M. Kaneko,3,4 J. W. Lee,5

T. Isobe,3,§ M. Kurata-Nishimura,3 T. Murakami,3,4,∥ D. S. Ahn,3 L. Atar,6,7 T. Aumann,6,7 H. Baba,3 K. Boretzky,7

J. Brzychczyk,8 G. Cerizza,1 N. Chiga,3 N. Fukuda,3 I. Gasparic,9,3,6 B. Hong,5 A. Horvat,6,7 K. Ieki,10 N. Inabe,3

Y. J. Kim,11 T. Kobayashi,12 Y. Kondo,13 P. Lasko,14 H. S. Lee,11 Y. Leifels,7 J. Łukasik,14 J. Manfredi,1,2 A. B. McIntosh,15

P. Morfouace,1 T. Nakamura,13 N. Nakatsuka,3,4 S. Nishimura,3 H. Otsu,3 P. Pawłowski,14 K. Pelczar,8 D. Rossi,6

H. Sakurai,3 C. Santamaria,1 H. Sato,3 H. Scheit,6 R. Shane,1 Y. Shimizu,3 H. Simon,7 A. Snoch,16 A. Sochocka,8

T. Sumikama,3 H. Suzuki,3 D. Suzuki,3 H. Takeda,3 S. Tangwancharoen,1 H. Toernqvist,6,7 Y. Togano,10 Z. G. Xiao,17

S. J. Yennello,15,18 and Y. Zhang17

(SπRIT Collaboration)

M. D. Cozma1,19,¶
1National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA

2Department of Physics, Michigan State University, East Lansing, Michigan 48824, USA
3RIKEN Nishina Center, Hirosawa 2-1, Wako, Saitama 351-0198, Japan

4Department of Physics, Kyoto University, Kita-shirakawa, Kyoto 606-8502, Japan
5Department of Physics, Korea University, Seoul 02841, Republic of Korea

6Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany
7GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany

8Faculty of Physics, Astronomy, and Applied Computer Science, Jagiellonian University, Kraków, Poland
9Division of Experimental Physics, Rudjer Boskovic Institute, Zagreb, Croatia

10Department of Physics, Rikkyo University, Nishi-Ikebukuro 3-34-1, Tokyo 171-8501, Japan
11Rare Isotope Science Project, Institute for Basic Science, Daejeon 34047, Republic of Korea

12Department of Physics, Tohoku University, Sendai 980-8578, Japan
13Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan

14Institute of Nuclear Physics PAN, ul. Radzikowskiego 152, 31-342 Kraków, Poland
15Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

16Nikhef National Institute for Subatomic Physics, Amsterdam, Netherlands
17Department of Physics, Tsinghua University, Beijing 100084, People’s Republic of China

18Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
19IFIN-HH, Reactorului 30, 077125 Măgurele-Bucharest, Romania

(Received 26 January 2021; revised 8 March 2021; accepted 22 March 2021; published 19 April 2021)

Many neutron star properties, such as the proton fraction, reflect the symmetry energy contributions to
the equation of state that dominate when neutron and proton densities differ strongly. To constrain these
contributions at suprasaturation densities, we measure the spectra of charged pions produced by colliding
rare isotope tin (Sn) beams with isotopically enriched Sn targets. Using ratios of the charged pion spectra
measured at high transverse momenta, we deduce the slope of the symmetry energy to be
42 < L < 117 MeV. This value is slightly lower but consistent with the L values deduced from a recent
measurement of the neutron skin thickness of 208Pb.
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Recent gravitational wave measurements of the neutron
star merger event GW170817 provide information about
the deformability of neutron stars (NSs) [1,2]. Analyses of
the gravitational wave signal reveal that this deformability
mainly reflects the nuclear equation of state (EOS) at
densities of about twice the saturation density of nuclear
matter, ρ0 ≈ 2.6 × 1014 g =cm3 or 0.16 =fm3. While the
GW170817 observations provide key insights into NSs and

their mergers, they do not reveal how the NS EOS depends
on the abundances of its constituent neutrons, protons, Δ
resonances, and pions [3–12]. To understand what is the
prevailing form of matter in the NS outer core, such
microscopic information is essential.
Microscopic information about the EOS has only been

extracted from laboratory experiments. Measurements of
nucleus-nucleus collisions have constrained the EOS for
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symmetric matter comprised of equal proton ρp and
neutron ρn densities for total densities ρ ¼ ρn þ ρp of ρ0 ≤
ρ ≤ 4.5ρ0 [13–15]. The main challenge for asymmetric
systems is to understand the symmetry energy, which
describes how the EOS depends upon isovector potentials
that have the opposite sign for neutrons as for protons and
depend linearly on the difference between neutron and
proton densities ðρn − ρpÞ or, equivalently, on the isospin
asymmetry δ ¼ ðρn − ρpÞ=ρ [3,7,9,16–18].
The symmetry energy has been constrained at subsatu-

ration densities using a variety of nuclear structure and
reaction observables [16,17,19]. To probe higher densities,
one must study central collisions between two complex
nuclei. At incident energies of about 300 AMeVand above,
nuclear matter can be compressed to densities approaching
2ρ0 [20]. The isovector mean field potentials cause the flow
of neutrons emitted from this dense region to differ from the
flow of protons; this difference provides an observable that
can constrain the symmetry energy [18,21].
In these dense regions, nucleon-nucleon inelastic colli-

sions produceΔ baryons that decay to nucleons by emitting
pions. From theΔ production and decay cross sections, one
expects the ratio Mðπ−Þ=MðπþÞ of the multiplicity (M) of
negatively and positively charged pions per collision to be
proportional to ðρn=ρpÞ2 [18,22]. Because the ratio ðρn=ρpÞ
strongly reflects the isovector mean field potentials within
this dense region, both the total pion multiplicity yield ratio
Mðπ−Þ=MðπþÞ [18,23] and the dependence of the pion
ratio on pion momentum [23–25] reflect the density
dependence of the symmetry energy. Existing studies of
Mðπ−Þ=MðπþÞ [26,27] with stable nuclear beams have not
provided a consistent constraint on the symmetry energy at
suprasaturation densities ρ > ρ0. This may result from
different assumptions for the Δ and pion potentials that
cause the calculated low energy pion spectra, the
Mðπ−Þ=MðπþÞ ratios and the symmetry energy constraints
to differ [28].
Powerful new radioactive isotope facilities are being

built to investigate how nuclei and the nuclear EOS depend
on δ ¼ ðρn − ρpÞ=ρ [16,18,29]. Here we present results
from the first experiment at these new facilities to probe the
symmetry energy at high density with radioactive beams. In
this experiment, beams of 132Sn, 124Sn, 112Sn, and 108Sn
projectiles at 270 AMeV incident energy bombarded
isotopically enriched (> 95%) 124Sn and 112Sn targets of
608 and 561 mg =cm2 areal density at the Radioactive Ion
Beam Factory in Japan. Light charged particles, including
π− and πþ mesons, were detected in a new device, the
SπRIT time projection chamber (TPC), placed inside the
superconducting analyzer for multiparticles from radio-
isotope beams (SAMURAI) spectrometer [30].
Previous publications describe the design and perfor-

mance of the SπRIT TPC [31–33], its trigger systems [34],
electronics readout system [35], and analysis software
[36,37]. To measure minimum ionizing pions as well as

isotopically resolved H, He, and Li isotopes, we expanded
the typical dynamic range of the TPC electronics by a factor
of 5 [38]. To seamlessly measure pions over the essential
range of scattering angles, we placed the target at the
entrance of the TPC and corrected for space charge effects
from the beam traversing the TPC [39].
Charged particles were identified by their electronic

stopping powers dE=dx and magnetic rigidities [36]. To
optimize momentum resolution, pion data are measured at
azimuthal angles −40° < ϕ < 25° ∪ 160° < ϕ < 210°,
where the pion momenta are mainly perpendicular to the
magnetic field. Clean pion identification was achieved. We
utilize ϕ independence and interpolate the pion spectra to
other azimuthal angles where the momentum resolution
would be inferior. We fit the dE=dx distributions for each
momentum bin to determine the particle yield and the
background contribution.
We focus on the most central collisions with the highest

charged particle multiplicities corresponding to impact
parameters of b < 3 fm [33]. Electrons and positrons from
the Dalitz decay of π0 are the largest contributions to
the pion background and have been subtracted as detailed
in Ref. [40]. These background contributions are
insignificant.
The TPC pion acceptance in the current experiment

allows energy of pions to be accurately measured down to
0 MeV in the c.m. of the total system. We focus on pions
measured to polar angles of θc:m: < 90° with respect to the
beam where pion acceptance is complete. This angular cut
is also applied to the theoretical calculations discussed later.
We calculate the efficiency by embedding Monte Carlo
pion tracks into real events and determining the fraction of
these tracks that are accurately reconstructed. We used a
calibration beam composed of hydrogen isotopes at well-
known momenta to check the momentum determination of
the TPC. The momentum values obtained by using the TPC
design geometry and SAMURAI dipole magnetic field
agreed to within 1% of the known values [41]. The
estimated systematic uncertainties are 4% for the individual
pion spectra and 2% for the single and double ratios of
charged pion spectra. These uncertainties are incorporated
into the discussion below.
The total π− and πþ multiplicities and their ratios

for central (b ≈ 3 fm) 132Snþ 124Sn, 112Snþ 124Sn, and
108Snþ 112Sn collisions are published in Ref. [42].
Comparisons of the total pion ratios predicted by seven
different theoretical calculations exhibit differences among
them that exceed their sensitivity to the symmetry energy.
Different assumptions regarding the mean field potentials
for Δ baryons and pions can strongly influence the
production of low energy pions and thus the total charged
pion multiplicities and their ratios [28]. To reduce this
sensitivity, we focus on pion spectra at higher momenta
where sensitivity to the isospin dependence of the nucle-
onic mean fields dominates [28]. Using the pion spectral
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ratios at high transverse momenta, we obtain a correlated
constraint at suprasaturation densities on the symmetry
energy and the momentum dependence of the isovector
nucleonic mean field potentials.
For our investigations, we use the dcQMD semi-

classical quantum molecular dynamics (QMD) model of
Ref. [28]. This model has provided constraints on the
symmetry energy from neutron and proton elliptic flow
measurements [21] and from pion production [27,43]. It
also provides reasonable predictions of the pion multi-
plicities and ratios for the current experiment [42]. A
unique aspect of the dcQMD model is the implementation
of the conservation of total energy for the system, which is
not simply satisfied at the two-body level due to the
momentum and isospin asymmetry dependence of inter-
actions. This involves modifying the collision term to
allow for energy transfer between scattering particles and
the rest of the system, leading to shifts of particle
production thresholds [27,44,45]. With this correction,
consistent constraints for the symmetry energy density
dependence were obtained from pion production and
elliptic flow [27]. Further details of this model can be
found in Refs. [21,27,28,43].
At beam energies of 270 AMeV, high energy pions are

primarily produced by exciting Δ (1232) baryons via two-
nucleon N þ N → N þ Δ inelastic scattering processes.
These Δ’s may scatter elastically or inelastically via
N þ Δ → N þ Δ0 or decay via Δ → N þ π producing
pions. Pions, in turn, can be absorbed via π þ N → Δ.
Details of the Δ resonance production parametrization and
its modification in nuclear medium can be found in
Refs. [46,47]. The present calculations require realistic
binding energies per nucleon, charge radii and neutron
skins for projectile and target nuclei, and a good quanti-
tative description of the experimental stopping, directed
flow, and elliptic flow observables [48,49]. These prior
analyses are consistent with the isoscalar effective mass
m�=m ¼ 0.7, compressibility modulus K0 ¼ 245 MeV
[28], and in-medium elastic nucleon-nucleon cross sections
[50] used here.
The Gaussian wave functions for nucleons and pions in

dcQMD have widths that reflect the experimental ratio of
pion-to-proton charge radii [43]. Pions move under the
influence of the Coulomb interaction and S and P wave
pion optical potentials calculated with the “Batty-1”
parameters of Refs. [43,51]. We find that the usual ansatz
of setting the Δ potential in nuclear matter equal to that of
nucleons leads to incorrect π− and πþ production thresh-
olds and total multiplicities [28,42]. Therefore, we adjust
the potential depths at saturation density and effective
masses in the isoscalar and isovector channels [28] of the Δ
to reproduce experimental total pion multiplicities and
mean kinetic energies.
In dcQMD, the nuclear EOS is defined in terms of the

energy per nucleon and is given by [52]

E
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ðρ; δÞ ¼ KEðρ; δÞ þ Au

ρð1 − δ2Þ
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ρσ0
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3
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ρ20
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Z Z
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Here, KEðρ; δÞ is the kinetic energy, followed by four local
potential energy terms that depend on density ρ and
asymmetry δ. The final nonlocal term models Pauli
exchange terms and the finite range of nucleon-nucleon
interactions. Parameter D controls the compressibility
K0 ¼ 245 MeV and skewness Q0 ¼ −350 MeV of sym-
metric matter, and x and y control slope L and curvature
Ksym parameters of the symmetry energy SðρÞ. We correlate
L and Ksym via Ksym ¼ −488þ 6.728 × L (MeV) and also
set Sðρ ¼ 0.1 =fm3Þ ¼ 25.5 MeV, consistent with nuclear
mass and radius measurements [53,54].
The left and right panels of Fig. 1 show the c.m.

transverse momentum spectra dM=dpT at θc:m: < 90° for
the very neutron rich 132Snþ 124Sn and the nearly sym-
metric 108Snþ 112Sn systems, respectively. The difference
in the pT values for the maxima of the π− and πþ spectra
reflects the influence of the Coulomb interaction. The
calculations with L ¼ 80 MeV, shown in the figure have
been fitted to the total multiplicities by optimizing the Δ

FIG. 1. Measured and calculated pion spectra. The red lines are
the calculated pion spectra after adjusting the Δ potential to
reproduce the pion multiplicities. The blue lines differ from
the red lines in that the pion optical potential has been removed.
The nucleon potentials in these simulations correspond to
L ¼ 80 MeV and Δm�

np ¼ 0.
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potentials and effective masses. Here, the scaled difference
between neutron and proton effective masses, Δm�

np=δ ¼
½m�

n −m�
p�=ðmδÞ is set to zero. The red curves show the

resulting calculations, including pion optical potentials,
while the blue curves show calculations where pion
potentials are removed. Simulations without the pion
optical potential result in a significant underprediction of
the pion spectra at low pT and that extends over a larger
range of momenta in the case of the πþ spectra in both
reactions. However, the shapes of the spectra at higher
transverse momentum pT > 200 MeV= c are largely
unchanged by the choice of Δ and pion optical potentials,
and remain sensitive to the nucleonic mean field potentials
and to the symmetry energy [28]. Such sensitivities to the
details in pion and Δ potentials for the low energy pions
could account for the differences in transport code pre-
dictions for the total pion yields reported in Ref. [42].
Next, we focus on the isovector mean field potentials that

contribute to the symmetry energy and are opposite in sign
for neutrons vs protons and π− vs πþ. We highlight these
isovector potentials by constructing the single ratio
SRðπ−=πþÞ ¼ ½dMðπ−Þ=dpT �=½dMðπþÞ=dpT �. In Fig. 2,
SRðπ−=πþÞ132þ124 for the neutron rich 132Snþ 124Sn sys-
tem is shown in the top panel and SRðπ−=πþÞ108þ112 for the
nearly symmetric 108Snþ 112Sn systems in the bottom
panel. The steep rise in the single ratios at low pT originates
from the opposite Coulomb forces experienced by π−

and πþ.
We construct the pion single spectral ratios using

dcQMD with 12 sets of calculations with values for L
of (15, 60, 106, and 151 MeV) and Δm�

np=δ of (−0.33, 0,
and 0.33). For clarity, we show only four calculations with
ðL;Δm�

np=δÞ ¼ ð60;−0.33Þ, (60, 0.33), (151, −0.33), and
(151, 0.33) represented by blue solid, blue dashed, red
solid, and red dashed curves, respectively. All calculations
underpredict the data at pT < 50 MeV =c and overpredict
the data at pT ≈ 150 MeV =c for both systems. As
expected, the neutron rich system of 132Snþ 124Sn dis-
plays much more sensitivity at high pT to the slope of the
symmetry energy L than does the nearly symmetric
108Snþ 112Sn system. The disagreement with data
observed at low pT for both systems suggests some
inaccuracy in the theory that does not depend strongly
on the asymmetry δ. Such effects could originate from
inaccuracies in the treatment of Coulomb interactions or
of the pion optical potentials above saturation density, for
example. Nonresonant pion emission or absorption,
neglected in the current calculations, could also contribute
to the incorrect shape of the single spectral ratios at low pT
in Fig. 2 and its influence should be investigated.
These effects should be much less important above
200 MeV =c, where the trends of the data and the
calculations become more comparable.
Interpolating the dcQMD calculations, we fit the

single ratios at pT > 200 MeV =c and extract correlated

constraints on L and Δm�
np=δ shown in Fig. 3. The

correlated nature of this constraint means that larger values
for Δm�

np would imply larger values for L. Absent any
constraint on Δm�

np, the best fit value is L ¼ 79.9�
37.6 MeV with S0 ¼ 35.3� 2.8 MeV. The largest contri-
bution to the total uncertainty is the statistical uncertainty.
This value is consistent with constraints extracted from
proton and neutron elliptic flows in Ref. [21] using the
same transport model.
Since both reactions have the same total charge, approx-

imately the same isoscalar fields, and differ principally
by their asymmetry δ, the double ratio DRðπ−=πþÞ ¼
SRðπ−=πþÞ132þ124=SRðπ−=πþÞ108þ112 should primarily
reflect the isovector mean fields that determine the sym-
metry energy. Experimentally, the double ratio cancels out
most of the systematic errors but the statistical errors
propagate. The current uncertainties in the double ratios
shown in Fig. 4 are large and thus offer less precise
constraints than single ratios. Nonetheless, the data are

FIG. 2. Single pion spectral ratios for 132Snþ 124Sn (top) and
108Snþ 1124Sn (bottom) reactions. The curves are dcQMD
predictions from different L and Δm�

np values listed in the
bottom panel.
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statistically consistent with the predictions indicated
by the shaded area allowed by the 1 σ range of the L
values (49–105 MeV) assuming the most probable value
of Δm�

np=δ ¼ 0.
Additional measurements would reduce the uncertainties

of this constraint. These include pion measurements at
higher and lower incident energies to constrain nonresonant
pion emission and the interactions of Δ baryons with
nuclear matter. Precise measurements of the ratios of
neutron and proton energy spectra should constrain
Δm�

np more accurately, removing an important contribution
to the present uncertainty. Complementary measurements
of proton and neutron elliptic flow are also desirable.

Finally, ongoing efforts in transport theory by the Transport
Model Evaluation Project Collaboration (e.g., Ref. [55])
would allow a more comprehensive exploration of the
equation of state of dense neutron rich matter via heavy ion
collisions.
In conclusion, we present precise spectra of charged

pions produced in intermediate energy collisions involv-
ing rare isotope Sn beams on isotopic Sn targets and use
them to constrain the symmetry energy at suprasaturation
densities. To avoid complications resulting from poorly
constrained Δ baryon potentials and nonresonant pion
emission that are currently difficult to model, we focus our
analyses on energetic pions with pT > 200 MeV=c and
obtain symmetry energy constraints of 42 < L < 117 and
32.5 < S0 < 38.1 MeV. The present results suggest a
representative symmetry pressure of Psym ¼ 12�
10 Mev=fm3 at ρ=ρ0 ¼ 1.5. These L values are smaller
than the values L ¼ 106� 37 and S0 ¼ 38.3� 4.7 MeV
[56] extracted from a new measurement of the neutron
skin thickness of 208Pb [57], but close to the values 70 <
L < 101 and 33.5 < S0 < 36.4 MeV [58] extracted from
charge exchange and elastic scattering reactions. We note
that both the PREXII and charge exchange results are
extrapolated from subsaturation density, while the pion
results are extrapolated from suprasaturation density.
These L values are larger than the L values [59,60]
influenced by NS deformability [1,2] and radius
[61,62] measurements.
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