
 

Solutions of Modular Bootstrap Constraints from Quantum Codes

Anatoly Dymarsky 1,2 and Alfred Shapere 1

1Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA
2Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 143026, Russia

(Received 14 November 2020; revised 5 January 2021; accepted 15 March 2021; published 21 April 2021)

Modular invariance imposes rigid constraints on the partition functions of two-dimensional conformal
field theories (CFTs). Many fundamental results follow strictly from modular invariance and unitarity,
giving rise to the numerical modular bootstrap program. Here we report on a way to relate a particular
family of quantum error correcting codes to a family of “code CFTs,” which forms a subset of the space of
Narain CFTs. This correspondence reduces modular invariance of the 2D CFT partition function to a few
simple algebraic relations obeyed by a multivariate polynomial characterizing the corresponding code.
Using this correspondence, we construct many explicit examples of physically distinct isospectral theories,
as well as many examples of nonholomorphic functions, which satisfy all the basic properties of a 2D CFT
partition function, yet are not associated with any known CFT.
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Two-dimensional conformal field theories (CFTs) enjoy
an exceptionally wide range of applications, from con-
densed matter physics to string theory and quantum gravity.
Characterizing the space of all CFTs is one of the central
tasks of the conformal modular bootstrap program [1–17],
which aims to deduce universal properties of 2D theories,
as well as details of specific models, from the modular
invariance and non-negativity of their partition functions on
the torus. In a nutshell, the modular bootstrap conditions
form a proper subset of the conditions for conformal
invariance and unitarity, and hence a solution to the
bootstrap equations does not necessarily imply the exist-
ence of an actual theory. Nevertheless, it has been observed
numerous times, including in the context of the conformal
bootstrap in d > 2, that a robust solution of the bootstrap
constraints, e.g., a “kink” in the exclusion plot, reflects the
presence of an actual theory. This picture is consistent with
another observation that, with the exception of a limited
family of examples related to chiral models [18] and a class
of candidate partition functions for rational CFTs with two
characters [19], all currently known nonchiral candidate
partition functions—nonholomorphic modular-invariant
functions Zðτ; τ̄Þ, which can be expanded in (Virasoro)
characters with non-negative integral coefficients and with
leading coefficient equal to one (reflecting the requirement
of a unique CFT vacuum)—are partition functions of actual
2D theories. Furthermore, in practice, solutions of the

modular bootstrap equations are typically associated with
specific theories, which implicitly assumes that distinct
CFTs must have different partition functions.
We show that this simple picture is not accurate, and the

true situation is maximally complex: (i) there are many
functions Zðτ; τ̄Þ that are not partition functions of any
(known) theory, and (ii) there are many examples of
isospectral physically distinct theories, i.e., pairs, triplets,
and even groups of 11 theories, which are all inequivalent
but share the same partition function. Our results therefore
expose the limitations of any approach, including the
modular bootstrap program, which aims to characterize
CFTs solely on the basis of their torus partition functions.
Our construction is very explicit and uses a map from a

particular class of quantum error correcting codes to the
space of 2D Narain CFTs that describe the compactification
of free scalar fields on a multidimensional cube. The CFT
partition function in this case is fully determined by the
code, namely by the code’s refined enumerator polynomial,
introduced below. A direct search in the space of n-qubit
codes with n ≤ 8 readily reveals many dozens of distinct
codes with the same enumerator, leading to many examples
of physically distinct isospectral theories. There are also
many polynomials obeying the standard symmetries and
constraints of the enumerator polynomial, which are
nevertheless not enumerator polynomials of any actual
code. These “fake” polynomials provide thousands of
examples of modular-invariant Zðτ; τ̄Þ, which are sums
of Uð1Þn × Uð1Þn characters,

Zðτ; τ̄Þ ¼ 1þP
h;h̄Ch;h̄q

hq̄h̄

jηðτÞj2n ; q ¼ e2πiτ; ð1Þ
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with non-negative integral coefficients Ch;h̄, and which are
not partition functions of any known CFTs.
We start by reviewing graph codes, a particular family of

real self-dual stabilizer codes [20,21]. A graph code is
specified by a binary symmetric matrix B—the adjacency
matrix of an unoriented graph on n nodes, Bii ¼ 0,
Bij ¼ Bji ∈ f0; 1g. The adjacency matrix defines a set
of n generators

gi ¼ σix
Yn
j¼1

ðσjzÞBij ð2Þ

acting on the space of n qubits. Because the matrix B is
symmetric, the generators gi commute. Furthermore, they
are nilpotent g2i ¼ I and they generate an Abelian stabilizer
group S of rank 2n. There is a unique (up to scalar
rescaling) state ψC, which is invariant under the action
of any element of the stabilizer group, giψC ¼ ψC. Known
as the graph state [22–25], ψC can be written explicitly in
terms of the “computational” up-down basis. Self-duality
of the code implies that the Abelian stabilizer group
possesses the maximal possible number of independent
generators. The code is called real because all matrix
elements of (2) are real.
The most general element of the stabilizer group is a

product of generators

gðαÞ ¼
Yn
i¼1

gαii ; ð3Þ

characterized by a binary vector α⃗ ∈ Zn
2. Up to a sign it can

be written as a product of Pauli operators

gðαÞ ¼ ϵ
Yn
i¼1

ðσixÞαi
Yn
j¼1

ðσjzÞβj ; ϵ ¼ �1; ð4Þ

where the binary vector β⃗ ≔ B α⃗ mod 2. With this defi-
nition wyðαÞ ¼ α⃗ · β⃗ counts the number of Pauli matrices σy
in (4), while wðαÞ ¼ P

i αi þ βi − wyðαÞ counts the total
number of qubits on which gðαÞ acts nontrivially. A basic
characteristic of a code is its enumerator polynomial, which
counts the number of g ∈ S that act on a particular number
of qubits. For our purposes, we consider the closely related
refined enumerator polynomial, which keeps track of the
total number of affected qubits, as well as the number of
σy’s,

Wðx; y; zÞ ¼
X
α⃗∈Zn

2

xn−wðαÞywyðαÞzwðαÞ−wyðαÞ: ð5Þ

When the code is real, there is always an even number of σy
in each gðαÞ, and therefore W is invariant under

y → −y: ð6Þ

Furthermore, the refined enumerator polynomial of a self-
dual code is invariant under the transformation

x →
xþ yþ 2z

2
; y →

xþ y − 2z
2

; z →
x − y
2

:

ð7Þ

This symmetry follows from the MacWilliams identity
[26–28].
In the context of quantum codes, it is natural to call codes

equivalent if they are related by a permutation of qubits,
which at the level of graphs is simply a relabeling of nodes.
Two codes are also said to be equivalent if they are related
by a local Clifford (LC) transformation, a unitary trans-
formation gi → UgiU† acting on the individual qubits
U ¼ u1 ⊗ … ⊗ un, which preserves the form of the
stabilizer generators as tensor products of Pauli operators.
If we restrict attention to real codes, the only allowed LC
transformations are those generated by the Hadamard
matrix, ui ¼ H, which simply exchanges σix ↔ σiz.
Following a LC transformation, the generators can be
recombined to bring them again to graph form (2), so that
the action of the LC group can be understood in terms of
graph transformations. At the level of graphs, all code
equivalence transformations among real codes generate an
orbit in the space of graphs under the action of edge local
complementation (ELC) [29]. The action of an ELC
transformation on the graph adjacency matrix is as follows:

B → ½ðDþ IÞB þD�½DB þDþ I�−1; ð8Þ

where all operations, including matrix inversion, are under-
stood mod 2, and D is an arbitrary diagonal matrix.
Clearly, permutations of qubits and exchanges σix ↔ σiz

do not change (5); therefore, two graph codes associated
with graphs related by ELC will have the same refined
enumerator polynomial.
In the context of quantum computation, real codes are

not special and code equivalence is usually defined to
include the full group of LC transformations. At the level of
graphs, the full equivalence group gives rise to orbits under
local complementation. A classification of orbits under
local complementation for all graphs on n ≤ 12 nodes has
been performed in [30], where it was used to enumerate all
equivalence classes of self-dual stabilizer codes for n ≤ 12
qubits. The orbits of graphs under ELC are suborbits within
the orbits of local complementation. To our knowledge,
they have not been fully classified previously. We classify
all ELC orbits for graphs on n ≤ 8 nodes.
At this point, we would like to assign to each stabilizer

group of the form (2) a Narain CFT, which describes n free
scalar fields compactified on an n-dimensional cube of
“unit” size 2π in the presence of quantized B-field flux. The
Narain CFT can be defined in terms of an even self-dual
Lorentzian lattice inRn;n. Starting from (2) or, equivalently,
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from the graph adjacency matrix B, we define a lattice
generator matrix

Λ ¼
�

2I B

0 I

�
=

ffiffiffi
2

p
; ð9Þ

where Bij is an arbitrary antisymmetric matrix satisfying

B ¼ B mod 2: ð10Þ

It is easy to check that (9) satisfies ΛTgΛ ¼ g, where the
Lorentzian metric is

g ¼
�

0 I

I 0

�
: ð11Þ

Different values of B satisfying (10) lead to the same
Lorentzian lattice, and the corresponding CFTs are related
by T duality. The relation between graph codes and Narain
CFTs can be extended to all real self-dual codes [31]. We
will call the corresponding theories code CFTs.
The partition function of a code CFT is fully specified by

the underlying code itself or, more precisely, by its refined
enumerator polynomial

Zðτ; τ̄Þ ¼ WCðbb̄þ cc̄; bb̄ − cc̄; aāÞ
2njηðτÞj2n ; ð12Þ

where a ¼ θ2ðτÞ, b ¼ θ3ðτÞ, and c ¼ θ4ðτÞ. Using standard
relations for the Jacobi theta functions, one can verify
that (12) is invariant under τ → τ þ 1 due to (6) and under
τ → −1=τ due to (7). This ensures modular invariance of
the code CFT partition function. The refined enumerator
polynomial satisfies other conditions, which follow from its
definition:W should be homogeneous,Wð1; 0; 0Þ ¼ 1, and
all coefficients of the polynomialWðx; y; zÞ should be non-
negative integers. At the level of the partition function, this
ensures Zðτ; τ̄Þ is of the form (1) with non-negative
integral Ch;h̄.
The condition of invariance of the refined enumerator

polynomial under (6) and (7) is easy to “solve” in full
generality. A polynomial Wðx; y; zÞ invariant under both
symmetries is an arbitrary polynomial in three generating
polynomials,

W1 ¼ xþ z; W2 ¼ x2 þ y2 þ 2z2;

W3 ¼ x3 þ 3xy2 þ 4z3: ð13Þ

Imposing other conditions, Wð1; 0; 0Þ ¼ 1 and non-neg-
ativity of integer coefficients, reduces the problem of
finding such a W to an exercise in discrete linear program-
ming, which can be easily solved using computer algebra
for small and moderate n. As is well known in the context
of classical codes [28], there are many more polynomials

satisfying the aforementioned conditions than there are
actual codes. We call such polynomials that do not
correspond to codes fake refined enumerator polynomials.
Their number grows quickly with n. There are no fake
polynomials for n ¼ 1 and n ¼ 2, there are six fake
polynomials for n ¼ 3,

W ¼ x3 þ 2x2zþ 3xz2 þ y2zþ z3; ð14Þ

W ¼ x3 þ x2zþ 3xz2 þ 2y2zþ z3; ð15Þ

W ¼ x3 þ 2x2zþ xy2 þ 2xz2 þ 2z3; ð16Þ

W ¼ x3 þ xy2 þ 2xz2 þ 2y2zþ 2z3; ð17Þ

W ¼ x3 þ x2zþ 2xy2 þ xz2 þ 3z3; ð18Þ

W ¼ x3 þ 2xy2 þ xz2 þ y2zþ 3z3; ð19Þ

there are 11 for n ¼ 4, 128 for n ¼ 5, 2835 for n ¼ 6, 71
164 for n ¼ 7, 4 012 529 for n ¼ 8, and so on. Each fake
enumerator polynomial defines a candidate partition func-
tion via (12), which is modular invariant and non-negative,
yet which is not the partition function of any known
physical theory. The multitude of fake partition functions
of small central charge that do not correspond to known
CFTs is one of our main results.
T duality is a symmetry of any Narain CFT; it leaves the

physical theory intact, but can change the lattice generator
matrix. In principle T duality can map one code theory into
another code theory. It is easy to see that the code
equivalence transformations that respect the reality con-
dition—permutations of qubits and exchanges of
σix ↔ σiz—become T-duality transformations, at the level
of lattices and their associated Narain theories. The
opposite is also true: any T-duality transformation that
maps a code theory into another code theory is, at the level
of codes, a code equivalence that involves qubit permuta-
tions and exchanges σix ↔ σiz [31]. We therefore arrive at a
key observation: two code CFTs associated with graph
codes are T-dual to each other (physically equivalent) if and
only if the corresponding graphs are related by edge local
complementation. Our classification of all ELC orbits for
graphs on n ≤ 8 nodes therefore provides an enumeration
of all physically distinct code CFTs. By comparing refined
enumerator polynomials associated with different ELC
orbits, we find no degeneracies for n ≤ 6 and one degen-
eracy for n ¼ 7. Namely, one refined enumerator

W ¼ x7 þ x5y2 þ 5x4y2zþ 5x2y4zþ x5z2

þ 12x3y2z2 þ 9xy4z2 þ 4x4z3 þ 22x2y2z3 þ 4y4z3

þ 5x3z4 þ 25xy2z4 þ 11x2z5 þ 11y2z5 þ 10xz6 þ 2z7

ð20Þ
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is the same for two different classes of codes, giving rise to
a pair of physically distinct isospectral CFTs. At the level of
lattices, this corresponds to a pair of isospectral even self-
dual Lorentzian lattices (also equipped with a Euclidean
metric), analogous to Milnor’s example of isospectral even
self-dual lattices in R16 [32]. At the level of graphs, the two
ELC classes respectively include nine and ten different
graphs (up to isomorphisms). We have chosen one graph
from each class based on simplicity and aesthetics and have
depicted them in Fig. 1.
For n ¼ 8, there are already 60 new pairs and 5 triplets of

isospectral code theories, too many to list here. While we
did not fully analyze ELC classes for higher n, we can
utilize the analysis of [30] classifying orbits under local
complementation. Since any ELC orbit is a subset within an
orbit under local complementation, graphs belonging to
different local complementation orbits correspond to physi-
cally different theories. Going through the values n ¼ 9–11
we find many examples of pairs, triples, and, in fact,
k-tuples of isospectral code theories for every k ≤ 11,
confirming the expectation that the number of isospectral
theories grows rapidly with n. These findings raise the
question of identifying a mechanism that could explain the
growing number of isospectral theories.
A natural generalization of our construction would be to

consider the grand canonical partition function decorated
by Uð1Þn × Uð1Þn charges, Zðτ; τ̄; ξ; ξ̄Þ, where ξI and ξ̄I are
the associated chemical potentials. The choice ξI ¼ ξ and
ξ̄I ¼ ξ̄ for all I ¼ 1;…; n preserves permutation symmetry.
With this choice, for code theories the grand canonical
partition function is given in terms of the full code
enumerator polynomial Wðt; x; y; zÞ by an expression
generalizing (12)

Zðτ; τ̄; ξ; ξ̄Þ ¼ Wðbb̄þ cc̄; aāþ dd̄; bb̄ − cc̄; aā − dd̄Þ
2njηðτÞj2n ;

ð21Þ

where a ¼ θ2ðτ; ξÞ, b ¼ θ3ðτ; ξÞ, c ¼ θ4ðτ; ξÞ, and
d ¼ θ1ðτ; ξÞ. Just as one finds for Zðτ; τ̄Þ in (12), modular
covariance of Zðτ; τ̄; ξ; ξ̄Þ follows from the MacWilliams
identity for Wðt; x; y; zÞ. The introduction of nonzero ξ, ξ̄
removes the degeneracy of Z between the isospectral but
not T-dual n ¼ 7 theories associated with the graphs shown
in Fig. 1. A detailed derivation of (21) together with a

discussion of the n ¼ 7 case can be found in the
Supplemental Material [33], which includes Ref. [34].
The construction relating quantum codes to rational

CFTs outlined in this Letter is not unique. Other classes
of codes can be naturally mapped to families of nonchiral
rational theories [35]. As was shown in [36], conformal
blocks of rational CFTs are wave functions of the dual
Chern-Simons theory, which form a finite-dimensional
Hilbert space. Provisionally, we identify this Hilbert space
with the Hilbert space of qubits the quantum code
describes. Exploring further the role of quantum codes
in CFTs and in the holographic correspondence is an
important program to which we hope to return in the future.
There is a simpler chiral version of our construction.

Classical binary, doubly even self-dual codes are associated
with even self-dual lattices, which can be used to define
chiral CFTs. As is well known, starting with n ¼ 24 there
exist fake enumerator polynomials and hence would-be
holomorphic partition functions ZðτÞ, which are known to
have no CFT counterpart [18]. Furthermore, starting in
dimension n ¼ 16, there are isospectral self-dual lattices
and hence isospectral physically inequivalent chiral theo-
ries [37–39]. The main difference of our work is that it
applies to nonchiral theories, which are much less studied.
Furthermore, our examples arise in large numbers at much
smaller values of the central charge, with implications for
the numerical conformal bootstrap.
As a final remark, we notice that the partition function

(12) is a polynomial in code CFT partition functions
associated with the polynomials (13) [31]. This observation
suggests a simple way to construct many new modular-
invariant Zðτ; τ̄Þ by simply taking polynomials of any
collection of CFT partition functions and making sure that
the coefficients in the character expansion are non-negative
integers and the vacuum character is unique. For homo-
geneous polynomials, each term has leading small-q
behavior q−c=12, so uniqueness of the vacuum is a constraint
on the coefficients of the polynomial. The examples in this
Letter show that this constraint has many nontrivial
solutions. For an inhomogeneous polynomial in a single
variable, uniqueness of the vacuum requires the coefficient
of the leading term to be one, as in [40]. We expect that
there are many more possibilities for inhomogenious
polynomials in several variables, leading to a plethora of
modular-invariant Zðτ; τ̄Þ not associated with any CFT.
Conclusions.—In this Letter, we have reported on a way

to associate graph codes, a family of quantum error
correcting codes, to a specific class of Narain CFTs, whose
elements we call code theories. Code CFTs describe free
scalar fields compactified on a multidimensional cube in
the presence of quantized B-flux. This mapping between
graph codes and CFTs provides a new way to study
nonchiral theories. It allows us to construct many explicit
examples of isospectral nonchiral theories, as well as many
examples of would-be partition functions (1) which do not

FIG. 1. “Fish” graphs—representatives of two ELC orbits of
graphs, which at the level of graph codes share the same refined
enumerator polynomial (20) and lead to a pair of isospectral
nonchiral CFTs with c ¼ c̄ ¼ 7.
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correspond to any known theories. These examples empha-
size the fact that solutions of the modular bootstrap
equations need not correspond to a unique CFT, nor indeed
to any CFT at all.
Many technical details relevant to our presentation,

including data necessary to construct pairs and triples of
n ¼ 8 isospectral theories, can be found in the accompany-
ing work [31].
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