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We theoretically and numerically investigate a two-dimensional O(2) model where an order parameter is
convected by shear flow. We show that a long-range phase order emerges in two dimensions as a result of
anomalous suppression of phase fluctuations by the shear flow. Furthermore, we use the finite-size scaling
theory to demonstrate that a phase transition to the long-range ordered state from the disordered state is
second order. At a transition point far from equilibrium, the critical exponents turn out to be close to the
mean-field value for equilibrium systems.
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Introduction.—Nature exhibits various types of long-
range order such as crystalline solids, liquid crystals,
ferromagnets, and Bose-Einstein condensation. Whereas
they are ubiquitous in the three-dimensional world, some
types of long-range order associated with a continuous
symmetry breaking are forbidden in two dimensions by the
Mermin-Wagner theorem [1–3]. The representative exam-
ple of this theorem is that there is no long-range phase order
in two dimensions.
Recently, the long-range phase order out of equilibrium

has attracted much attention. A stimulating example is the
characteristic “flocking” behavior among living things such
as birds and bacteria. According to extensive numerical
simulations of a simple model proposed by Vicsek et al.
[4], the “flocking” behavior was identified with the
spontaneous emergence of the phase order in self-propelled
polar particle systems—it is often called the polar order [5].
A remarkable feature here is that it occurs even in two
dimensions [6–11] even though it is prohibited for equi-
librium systems by the Mermin-Wagner theorem [12]. This
phenomenon was also observed in the two-temperature
conserved XY model [13,14]. It is now accepted that the
long-range phase order can exist even in two dimensions
for some nonequilibrium systems with short-range
interactions.
The aim of this Letter is to clarify how the long-range

phase order emerges in two dimensions under a small
nonequilibrium perturbation to equilibrium systems. We
study a two-dimensional O(2) model with short-range
interaction. For equilibrium O(2) models, the dimension
d ¼ 2 is marginal; specifically, the long-range phase order
is broken by thermal fluctuations for d ≤ 2 but is stable for
d > 2 [15–18]. Here, we impose infinitesimal shear flow on
such a system and drive it into a nonequilibrium steady
state. We then ask whether long-range phase order appears
in the externally driven system. This Letter shows that the
answer is yes and investigates its origin.

There is a long history of studying phase transitions
driven by external nonequilibrium forces. Well-studied
examples are related to the Ising universality class, e.g.,
critical fluids, binary mixtures, and lattice gases [19–24].
The phase transition under shear flow was one of the topics
examined in this context [25–33]. In a seminal study, Onuki
and Kawasaki performed the renormalization group analy-
sis of the sheared critical fluids [25]. Recently, some groups
studied the related systems by using Monte Carlo simu-
lations [29,31–33].
Regarding externally driven systems with continuous

symmetry, the main focus has been on three-dimensional
phenomena such as an isotropic-to-lamellar transition of
block copolymer melts [34–37], an isotropic-to-nematic
transition of liquid crystals [38–43], a nematic-to-smectic
transition of liquid crystals [44–46], a crystallization of
colloidal suspensions [47,48], and a spinodal decomposi-
tion of a large-N limit model [49,50]. To our knowledge,
the main question of this Letter has been never addressed
before.
The key point of our study is to argue the stability of the

long-range phase order in terms of the infrared divergence
[51]. For the equilibrium O(2) model, the correlation
function of the phase fluctuation behaves as jkj−2 where
k represents the wave number. This fluctuation causes the
logarithmic divergence of the real-space correlation func-
tion in the limit of large system size and breaks the ordered
state. Therefore, if stable long-range phase order appears
under the shear flow, this logarithmic divergence must be
removed by the flow effects. In this Letter, we theoretically
demonstrate that the shear flow anomalously suppresses the
phase fluctuation from k−2x to jkxj−2=3, where the x direction
is defined as parallel to the flow. This new phase fluctuation
is small enough to remove the divergence. Furthermore, by
performing finite-size scaling analysis, we numerically
show that the phase transition to the ordered state from
the disordered state is second order. We also discuss our
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simulation result in the context of the previous results
obtained for the sheared Ising model.
Model.—Let φðr; tÞ ¼ (φ1ðr; tÞ;φ2ðr; tÞ) be a two-

component real order parameter defined on a two-
dimensional region ½0; Lx� × ½0; Ly�. The order parameter
is convected by the steady uniform shear flow with a
velocity vðrÞ ¼ ð_γy; 0Þ, where _γ ≥ 0 without loss of gen-
erality. The dynamics is given by the time-dependent
Ginzburg-Landau model

� ∂
∂tþ v ·∇

�
φa ¼ −Γ

δΦ½φ�
δφa

þ ηa; ð1Þ

hηaðt; rÞηbðt0; r0Þi ¼ 2ΓTδabδðt − t0Þδðr − r0Þ; ð2Þ

where the Landau free energyΦ½φ� is given by the standard
φ4 model

Φ½φ� ¼
Z

d2r

�
κ

2

X2
a¼1

ð∇φaÞ2 þ
r
2
jφj2 þ u

4
ðjφj2Þ2

�
: ð3Þ

Here, T is the temperature of the thermal bath, and it is
chosen independently of r.
The left-hand side of Eq. (1) represents the rate of change

following the flow. We stress that the convection term does
not break the rotational symmetry in the order-parameter
space. Furthermore, we note that in equilibrium our model
is reduced to “model A” in the classification of Hohenberg
and Halperin [52,53]. Because the steady-state distribution
of φ is given by the canonical ensemble, the system
exhibits quasi-long-range order instead of long-range order
[16,54].
Phase fluctuation in the low-temperature limit.—The

state realized at T ¼ 0 is given by minimizing the Landau
free energy Φ½φ�. For r < 0, we have the ordered solution
φ̄ ¼ ð ffiffiffiffiffiffiffiffiffiffiffi

−r=u
p

; 0Þ, where we choose the direction of order-
ing as n ¼ ð1; 0Þ. In equilibrium, this ordered state is
broken at finite temperature T > 0. Here, we study how the
shear flow suppresses the equilibrium fluctuations and
stabilizes the ordered state in the low-temperature limit.
To analyze the fluctuations around φ̄, we

transform the field variable as φðr; tÞ ¼ (
ffiffiffiffiffiffiffiffiffiffiffi
−r=u

p þ
Aðr; tÞ)( cos θðr; tÞ; sin θðr; tÞ), where Aðr; tÞ is the
amplitude fluctuation and θðr; tÞ the phase fluctuation.
The phase fluctuation corresponds to the gapless mode
associated with O(2) symmetry breaking [55–57].
Therefore, we study the phase fluctuation below.
Because the thermal fluctuations become sufficiently small
in the low-temperature limit, we can neglect the periodicity
of θðr; tÞ and describe its dynamics within the linear
approximation as

� ∂
∂t − _γkx

∂
∂ky þ Γκjkj2

�
θ̃ðk; tÞ ¼ η̃2ðk; tÞ; ð4Þ

where θ̃ðk; tÞ is the Fourier transform of θðr; tÞ. The equal-
time correlation function CθθðkÞ in the steady state is
defined by hθ̃ðk; tÞθ̃ðk0; tÞi ¼ CθθðkÞδðkþ k0Þ, where h� � �i
represents the average in the steady state. From Eq. (4),
CθθðkÞ is formally solved as [58]

CθθðkÞ ¼ TΓ
Z

∞

0

dse−Γκðsjkj2þ1
2
_γs2kxkyþ 1

12
_γ2s3k2xÞ: ð5Þ

For _γ ¼ 0, Eq. (5) is immediately integrated as
CθθðkÞ ¼ Tjkj−2=κ. In two dimensions, the jkj−2 mode
leads to the logarithmic divergence of the real-space
correlation function and destroys the long-range order.
For _γ > 0, the asymptotic behavior of Eq. (5) for small k

is calculated as

CθθðkÞ ≃
T

c0ð
ffiffiffi
κ

p
_γjkxj=ΓÞ23 þ κjkj2 ; ð6Þ

where c0 ≃ 2.04. The shear flow stretches the fluctuations
along the x axis, which induces the anisotropic term
ð ffiffiffi

κ
p

_γjkxj=ΓÞ2=3 in Eq. (6). Because the exponent 2=3 of
this term is smaller than 2, the equilibrium fluctuations
are suppressed so that the logarithmic divergence in two
dimensions is removed. Therefore, the fluctuations under
shear flow do not break the long-range phase order for
sufficiently low temperatures.
We also observe the exponent 2=3 beyond the linear

regime. To this end, we numerically solve the full equation,
Eq. (1), and calculate the structure factor, defined by
hφðkÞ · φðk0Þi ¼ SðkÞδðkþ k0Þ. Figure 1 plots S−1ðkÞ for
Γ ¼ T ¼ u ¼ 1.0, κ ¼ 0.5, _γ ¼ 0.1, and r ¼ −3.01, where
we have the long-range ordered state as explained below.
From this figure, we find that the kx dependence of
S−1ðkx; ky ¼ 0Þ crosses over from jkxj−2=3 to k−2x . This
behavior qualitatively agrees with the linearized model,
Eq. (6).
We note that the length scale l≡ ffiffiffiffiffiffiffiffiffiffi

κΓ=_γ
p

governs the
crossover behavior. Because l → ∞ in the equilibrium limit
_γ → þ0, the order of the two limits k → 0 and _γ → þ0
cannot be exchanged. This observation leads to the result
that the fractional mode jkxj−2=3 stabilizes the long-range
order even when _γ → þ0.

FIG. 1. Structure factor in ordered state. Left: S−1ðkx; ky ¼ 0Þ
versus kx. Right: S−1ðkx ¼ 0; kyÞ versus ky.
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Finite-size scaling analysis.—We carry out a finite-size
scaling analysis to show further evidences of long-range
order in the presence of shear flow. Because the finite-size
scaling theory in isotropic systems is modified by the
anisotropy of shear flow [32], we give an overview below
of the finite-size scaling theory in the sheared system.
Essentially the same analysis has been used for driven
lattice gases [21–23,80].
The finite-size scaling theory is constructed on the basis

of the scaling invariance at the second-order phase tran-
sition point. The scaling invariance is mathematically
expressed by two relations. The first one is written using
a free energy Fðτ; h; L−1

x ; L−1
y ; _γÞ in the finite-size system,

where τ ¼ ðr − rcÞ=rc is the dimensionless distance from
the transition point rc, and h is the external field coupled
with m̂ ¼ j R d2rφðrÞj=LxLy. Then, the scaling invariance
of the free energy near the critical point is given by the
scaling relation

Fðτ; h; L−1
x ; L−1

y ; _γÞ ¼ Fðbzτ τ; bzhh; bzxL−1
x ; bL−1

y ; _γÞ ð7Þ

for any b > 0, where the three scaling dimensions zτ, zh,
and zx are introduced. The second relation is that any
quantity hAih¼0 in the absence of an external field can be
expressed in terms of the correlation lengths ξx and ξy as

hAih¼0ðL−1
x ; L−1

y ; τ; _γÞ ¼ LwA
x A

�
ξx
Lx

;
ξy
Ly

; _γ

�
; ð8Þ

where wA is a constant and A is a scaling function.
All the critical exponents are expressed by combinations

of the three scaling dimensions: zτ, zh, and zx [58]. For
example, the critical exponents νx and νy, characterizing the
divergence of the correlation length (i.e., ξi ∼ jτj−νi), are
expressed as νx ¼ zx=zτ and νy ¼ 1=zτ. The exponent β,
characterizing the onset of magnetization slightly below the
critical point (i.e., hm̂ih¼0 ∼ jτjβ), is given by β ¼ −z̃h=zτ,
where we have introduced z̃h ≡ zh − ð1þ zxÞ.
We note that zx characterizes the anisotropy of the

divergence of the correlation length because it is rewritten
as νx=νy. Actually, the anisotropy of the shear flow makes
zx ≠ 1. This can be immediately confirmed from the
theoretical analysis of the linearized model by dropping
the φ4 term from Eq. (3). This model is well-defined for
r > 0 and exhibits a singular divergence as r → þ0. From a
similar calculation as the phase fluctuations in the low-
temperature limit, we obtain νx ¼ 3=2 and νy ¼ 1=2, and
then zx is given by zx ¼ νx=νy ¼ 3. Thus, it is natural to
introduce zx ≠ 1 in the presence of the shear flow.
Now, we show that the finite-size scaling theory works

well for our model using numerical simulations. Below,
we fix Γ ¼ T ¼ u ¼ 1.0 and κ ¼ 0.5 and treat _γ and r as
control parameters. From Eqs. (7) and (8), we can derive
the system-size dependence of the nth moment of mag-
netization as

hm̂nih¼0ðL−1
x ; L−1

y ; τ; _γÞ ¼ Lz̃hn
y MnðLzτ

y τ; L
zx
y L−1

x ; _γÞ: ð9Þ

The Binder parameter, defined by U ≡ hm̂4ih¼0=hm̂2i2h¼0,
satisfies

UðL−1
x ; L−1

y ; τ; _γÞ ¼ UðLzτ
y τ; L

zx
y L−1

x ; _γÞ: ð10Þ

This equation means that all curves of the Binder parameter
with different Lx values intersect at a unique point when
Lzx
y L−1

x is fixed. In Fig. 2, we plot the numerical result
for the Binder parameter U for _γ ¼ 5.0. We have assumed
zx ¼ 3 with reference to the linearized model and chosen
the system size as Lx ¼ 125, 216, 343, and 512 under the
condition Ly ¼ 20L1=3

x . This figure shows the existence of
the unique intersection point as expected.
According to the finite-size scaling relations Eqs. (9) and

(10), the magnetization hm̂ih¼0 and the Binder parameterU
can be expanded as power series near the critical point:

hm̂ih¼0 ¼ Lz̃h
y

XN
n¼0

Cm
n ðLzx

y L−1
x ÞLzτn

y τn; ð11Þ

U ¼
XN
n¼0

Cu
nðLzx

y L−1
x ÞLzτn

y τn; ð12Þ

where Cm
n and Cu

n are expansion coefficients dependent on
Lzx
y L−1

x . By fitting the simulation data to these expansions,
we determine the critical point rc and the scaling exponent
ðz̃h; zτÞ. In particular, we use the data in the region
−1.930 < r < −1.920 and perform simultaneous fitting
of the two quantities hm̂ih¼0 and U to Eqs. (11) and
(12) with N ¼ 2; we obtain rc ¼ −1.9257� 0.0002,
zτ ¼ 2.05� 0.11, and z̃h ¼ −0.983� 0.026. The validity
of these fittings is shown in Fig. 3, which is the scaled plot
of the two quantities hm̂ih¼0 and U. The scaled data for the
different system sizes overlap, verifying the finite-size
scaling relations Eqs. (11) and (12). It is noteworthy that
the existence of the universal curve provides an evidence of

FIG. 2. Binder parameter U as a function of r for _γ ¼ 5.0. Inset:
enlargement of the intersection point. The error bars of the data
are in the order of the point sizes.
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zx ¼ 3. We can also perform the consistency check of
zx ¼ 3 from the observation of νx and νy by using the
property that zx is related to the anisotropy of the
divergence of the correlation length [58].
From the obtained values of zτ and z̃h, the critical

exponent β is calculated as β ¼ −z̃h=zτ ¼ 0.480� 0.029.
This behavior is very similar to the result for the mean-field
theory of the φ4 model in equilibrium. It is consistent with
the previous theoretical results for the sheared Ising model
[25,30], where the mean-field character is recovered under
a sufficiently large shear rate or in the large limit.
Phase diagram.—We apply the above procedure to

systems with smaller _γ and show the phase diagram in
Fig. 4, where the critical point rc is plotted as a function of
_γ. For all _γ values we have examined, the assumption
zx ¼ 3 is valid and the long-range phase order exists below
rc. We then ask where rcð_γÞ terminates as _γ → þ0. To
answer this question, we assume that the critical point rc
behaves as a function of _γ in the form

rcð_γÞ ¼ D0 _γ
w þ rcðþ0Þ: ð13Þ

Note that for the sheared Ising model, this functional
form is known to reproduce the behavior of the critical
point for small _γ [27,31–33]. By fitting the simulation
data to Eq. (13), we obtain the best-fit parameters
rcðþ0Þ ¼ −2.9139� 0.0151, D0 ¼ 0.685� 0.016, and
w ¼ 0.228� 0.006. The corresponding curve is drawn
as the black solid one in Fig. 4. The good agreement
between the numerical estimation and the best-fit curve
confirms the validity of Eq. (13) for our model. This gives
the evidence that the long-range phase order is stabilized
even under the infinitesimal shear flow. The critical point
at the infinitesimal shear rate _γ → þ0 is estimated
as rcðþ0Þ ¼ −2.9139� 0.0151.
Discussion.—We remember that our model exhibits the

Kosterlitz-Thouless transition in equilibrium. The transi-
tion point is estimated to be rKT ¼ −3.0204� 0.0087 [3].
Then, our results show that there exists a slight deviation
between rcðþ0Þ and rKT. We here discuss two possible
scenarios. The first one is that this deviation disappears by
using the data at smaller _γ for larger systems. Actually, for
the two-dimensional Ising model [31,32] and the three-
dimensional critical fluid [27], rcð_γÞ terminates at the
equilibrium transition point as _γ → þ0. As the second
scenario, this deviation may remain for larger systems
because the long-wavelength fluctuations (jkxj < 2π=l) are
drastically altered even when _γ → þ0 (see Fig. 1). Which
scenario is correct is left for future study.
Another question for small _γ is about the critical

exponent β. Our simulation showed that for _γ ¼ 0.5, β
agrees well with the mean-field value as in the case
of _γ ¼ 5.0. In contrast, for _γ ¼ 0.01, we obtained
zτ ¼ 2.03� 0.30 and z̃h ¼ −0.579� 0.02, which corre-
spond to β ¼ 0.285 [3]. Clearly, there is a large deviation
between the observed result and mean-field theory. We do
not judge whether this deviation comes from the finite-size
effects or remains in the large system-size limit. On a
related note, this problem also remains controversial for the
sheared Ising model [30–33]. More careful analysis for
smaller _γ is necessary.

(a) (b)

FIG. 3. Finite-size scaling plot for _γ ¼ 5.0. (a) U versus τLzτ
y . (b) hm̂ih¼0=L

z̃h
y versus τLzτ

y . In both figures, the inset is an enlargement
of τ ¼ 0. rc, zτ, and z̃h are fixed at the best-fit value. The error bars of the data are in the order of the point sizes.

FIG. 4. Critical point rc as a function of _γ. The red points
represent the numerical estimation and the black solid line
Eq. (13) with the best-fit parameter. Inset: rc − rcðþ0Þ versus
_γ with a log-log plot.
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The phase mode induced by the shear flow,
Sðkx; ky ¼ 0Þ ∼ jkxj−2=3, and the long-range order are
two sides of the same coin. The interesting point is that
the exponent 2=3 is numerically observed for all _γ values
we have examined, although it is derived without consid-
ering the nonlinear interaction of fluctuations. This obser-
vation suggests that nonlinear effects are irrelevant for
the structure factor in the ordered state. The theoretical
verification of this conjecture is left as a future work.
Finally, we discuss possible experiments associated with

our result. The model in this Letter gives an ideal
description of some experimental systems using liquid
undercooled metals [81,82] and magnetic fluids [83].
The liquid undercooled metal is known to exhibit the
liquid ferromagnet phase due to short-ranged exchange
interactions in three dimensions [81,82]. We expect that the
two-dimensional liquid ferromagnet phase can be observed
by designing a two-dimensional system [8].
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