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In quantum gases with contact repulsion, the distribution of momenta of the atoms typically decays as
∼1=jpj4 at large momentum p. Tan’s relation connects the amplitude of that 1=jpj4 tail to the adiabatic
derivative of the energy with respect to the coupling constant or scattering length of the gas. Here it is
shown that the relation breaks down in the one-dimensional Bose gas with contact repulsion, for a peculiar
class of stationary states. These states exist thanks to the infinite number of conserved quantities in the
system, and they are characterized by a rapidity distribution that itself decreases as 1=jpj4. In the
momentum distribution, that rapidity tail adds to the usual Tan contact term. Remarkably, atom losses,
which are ubiquitous in experiments, do produce such peculiar states. The development of the tail of the
rapidity distribution originates from the ghost singularity of the wave function immediately after each loss
event. This phenomenon is discussed for arbitrary interaction strengths, and it is supported by exact
calculations in the two asymptotic regimes of infinite and weak repulsion.
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Introduction.—In a quantum gas, contact interactions
can impart large momenta to the particles: the singularity of
the many-body wave function when two particles are at the
same position is reflected in the tails of their momentum
distribution wðpÞ, which decay as wðpÞ ∼ 1=jpj4. It con-
trasts with the Gaussian decay that would be expected from
the Boltzmann distribution in an ideal gas. The 1=jpj4 tails
were noticed in hard-core one-dimensional (1D) bosons
by Minguzzi et al. [1] (see also Ref. [2]), then studied in
1D gases of arbitrary interaction strength by Olshanii
and Dunjko [3], and by Tan in three-dimensional (3D)
fermionic gases [4–6]. (For a general analysis in two
and three dimensions for bosons, fermions, and mixtures
see Refs. [7,8].) Remarkably, the amplitude of the tail,
C ≔ limp→∞ jpj4wðpÞ, is a thermodynamic quantity [3,5].
Tan’s “adiabatic sweep theorem” [5], or simply “Tan’s
relation,” connects the amplitude C to the adiabatic
derivative [9] of the energy with respect to the two-
body interaction parameter. For Bose gases, Tan’s relation
reads [8]

C ¼ Cc; with Cc ≔
m2

ð2πℏÞd 2g
2
∂ðE=VÞ

∂g : ð1Þ

Here m is the particles’ mass, E is the energy of the gas, V
is its volume, and g is the interaction coupling constant
[10]. The momentum distribution is normalized asR
ddpwðpÞ ¼ N=V, where N is the total number of atoms

and d is the dimension of the system. The contact density
Cc is defined by the second equality of Eq. (1), for any
density matrix diagonal in the eigenbasis. Tan’s relation

C ¼ Cc has been proved with wide generality and applies
to many states of the gas [11,12].
Tails in the momentum distribution have been observed

experimentally in 3D fermionic gases and Tan’s relation
has been verified [13,14]. It has also been verified, using
spectroscopy, in 3D Bose gases [15]. On the theory side,
Tan’s relation and its extensions have been thoroughly
investigated [7,8,11,12,16–18]. Recent works have focused
on the 1D Bose gas [19–22], exploiting the relation
between the contact density and the zero-distance two-
body correlation function [Eq. (3)].
Tan’s relation (1) is based on the assumption that the tails

of the momentum distribution are due entirely to the
contact two-body interaction. In this Letter, we point out
that this assumption is not always valid. We show that,
owing to its integrability, the 1D Bose gas with contact
interactions can have a contribution to its 1=jpj4 tail of
different origin, so that C > Cc. This happens in a peculiar
class of stationary states, which we characterize.
Importantly, such peculiar stationary states are generated

by atom losses. That makes them ubiquitous in modern
cold atoms experiments in 1D [23,24], which always suffer
from losses [25–27]. We stress that those states are sta-
tionary with respect to Hamiltonian dynamics, so even if
losses are no longer present at long times, the breakdown of
Tan’s relation persists. Therefore, an important implication
of our findings is that Tan’s relation will most probably be
violated experimentally in 1D Bose gases.
The essence of the breakdown of Tan’s relation for a gas

submitted to losses is as follows. Immediately after a loss
event, the wave function has a singularity at the position of
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the lost atoms, in addition to the singularities when two of
the remaining particles meet. In the momentum distribu-
tion, this additional singularity is reflected as a 1=p4 term
that adds to the usual contact term. If the gas were chaotic,
then it would relax to a new thermal equilibrium state. The
effect on the momentum distribution would therefore be
observable only at a short time after the loss, since thermal
states belong to the class of states that fulfill Tan’s relation.
However, the 1D Bose gas is not chaotic and the effect
remains present even after relaxation to a stationary state.
The results presented in this Letter are twofold. First, we

characterize the class of states for which Tan’s relation is
violated, and we provide a formula that supersedes it
[Eq. (4)]. Second, we demonstrate that losses bring the
gas to such a state. Our results on losses are supported by
exact analyses in the hard-core and quasicondensate
regimes, for which we can exploit recent results of
Refs. [28–30]. In both regimes, we find that the amplitude
of the tail of the momentum distribution C becomes
substantially larger than the value Cr predicted by Tan’s
relation.
The contact in the 1D Bose gas.—We consider bosons

with contact repulsion in a periodic system of size L. The
Hamiltonian is, with ½ΨðzÞ;Ψþðz0Þ� ¼ δðz − z0Þ,

H ¼
Z

L

0

dzΨþðzÞ
�
−
ℏ2∂2

z

2m
þ g
2
ΨþðzÞΨðzÞ

�
ΨðzÞ: ð2Þ

We start by recalling the effects of the contact interaction on
the tails of the momentum distribution, following Ref. [3].
Because of the contact interaction, the many-body wave
function ψðz1;…; zNÞ ¼ h0jΨðz1Þ…ΨðzNÞjψi has a cusp
singularity whenever two positions coincide [31]:
∂ziψ jzi→z−

j
− ∂ziψ jzi→zþ

j

¼ ðmg=ℏ2Þψð…; zi ¼ zj;…Þ. When
one takes the Fourier transform, those cusps become 1=p2

tails, which give a ∼1=p4 contribution to the momentum
distribution after taking the squared modulus of the wave
function. When this calculation is done carefully (as in
Ref. [3]), it shows that the contact interaction contributes to
the tail of the momentum distribution wðpÞ as Cc=p4 with

Cc ¼
m2

2πℏ
g2n2gð2Þð0Þ: ð3Þ

Here n ¼ N=L is the atom density and gðjÞð0Þ ¼
hΨðzÞþjΨðzÞji=nj, where j ∈ N, is the normalized
zero-distance j-body correlation function, independent of
z in a translation-invariant system. Equation (3) is an
alternative, more general, definition of the contact
density Cc in 1D, which works for all states including
nonstationary ones. For stationary states (diagonal density
matrices), it is equivalent to the one in Eq. (1). Indeed, if
jψi is an eigenstate, a straightforward application of
the Hellmann-Feynman theorem leads to n2gð2Þð0Þ ¼
2hψ j∂H=∂gjψi=L ¼ 2∂ðE=LÞ=∂g.

We now argue that there exist peculiar states, not consid-
ered in Ref. [3], where the equality C ¼ Cc breaks down.
The rapidity distribution, its tails, and tails of the

momentum distribution.—Because of the extensive number
of its conserved quantities, the 1D Bose gas typically
relaxes to a generalized Gibbs ensemble (see, e.g., [32])
that is parametrized by its rapidity distribution [33–35]. The
rapidities are conserved by the Hamiltonian dynamics: they
characterize the eigenstates of the Hamiltonian (2), which
take the form of Bethe states [36,37]. The rapidities are the
asymptotic momenta of the atoms if one lets the gas expand
freely in 1D [38–42]. They are conveniently thought of as
the momenta of quasiparticles with infinite lifetime [43,44],
dubbed “Bethe quasiparticles” in this Letter. After relax-
ation to a generalized Gibbs ensemble, expectation values
of local observables are functionals of the rapidity distri-
bution ρðqÞ [33–35]. In the following, we normalize the
rapidity distribution as

R
dqρðqÞ ¼ N=L.

We stress that the rapidity distribution is not equal to the
momentum distribution of the atoms. This is well illustrated
by the ground state of the system: its rapidity distribution
ρðkÞ vanishes outside a finite interval [36,37], while its
momentum distribution wðpÞ presents the aforementioned
1=p4 tails that extend to infinity [3].
Nevertheless, for large rapidities the momentum distri-

bution may reflect features of the rapidity distribution and
vice versa. To be more precise, let us imagine that the
rapidity distribution of the gas has tails decaying as 1=q4

(we will argue below that atom losses naturally produce
such tails), and let Cr ≔ limq→∞q4ρðqÞ be their amplitude.
Then we argue below that

C ≔ lim
p→∞

p4wðpÞ ¼ Cc þ Cr: ð4Þ

This formula, which generalizes Eq. (1), is our first main
result. In states in which Cr ¼ 0, which include single
eigenstates of H in finite size, thermal states, and states
produced by merging two thermal clouds with different
temperatures [45], Tan’s relation (1) is recovered. On the
other hand, a nonvanishing Cr results in its breakdown. We
note that Eq. (4) can also be applied to nonstationary ones
[46] if one uses Eq. (3) to define Cc.
Derivation of Eq. (4).—We develop separate arguments

for the hard-core regime g → ∞ and for finite g. When
g → ∞, exact formulas are available [47–49] for the
correlation function gð1ÞðzÞ ¼ hΨþðzÞΨð0Þi=n, which
allow us to infer its short-distance behavior. For a rapidity
distribution ρðqÞ with a Cr=q4 tail, we find [49]

gð1ÞðzÞ ¼
z→0

1−i
q1
n
z−

q2
n
z2þ i

q3
n
z3þπðCrþCcÞ

6ℏ3n
jzj3þOðz4Þ;

ð5Þ

where qj ¼ ð1=ℏjj!Þ R qjρðqÞdq. We arrive at this result by
studying a lattice regularization of the Bose gas, for which
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we use an exact finite-distance formula for the two-point
correlation function, and then by taking the continuum limit
[49]. Equation (5) generalizes known formulas for the
short-z expansion of gð1ÞðzÞ in the g → ∞ limit [3,48,50] to
the case of arbitrary rapidity distributions, including those
with a Cr=q4 tail. We then use the fact that the Fourier
transform of a cusp singularity in jzjj has tails decaying as
1=pjþ1. Evaluating that Fourier transform, we obtain
wðpÞ¼ðn=2πℏÞR eipz=ℏgð1ÞðzÞdz ≃

jpj→∞
ðCrþCpÞ=p4. Thus

we arrive at Eq. (4).
For finite g and arbitrary rapidity distributions, a direct

computation of the momentum distribution or of its Fourier
transform gð1ÞðzÞ is much more difficult, even numerically
(see, e.g., Refs. [41,51]). Instead, we turn to a different
argument, which formalizes the physical intuition that
Bethe quasiparticles with large rapidities q must correspond
to atoms with large momenta p ≃ q. We give a brief sketch
of the argument here, in order to convey the main
physical idea. Details are deferred to the Supplemental
Material [49].
Let us introduce a cutoff Λ, large enough so that

ρðqÞ ≃ Cr=q4 as soon as q > Λ. We split the rapidity
distribution into two terms, ρ<ΛðqÞ ¼ θðΛ2 − q2ÞρðkÞ
and ρ>ΛðqÞ ¼ θðq2 − Λ2ÞρðqÞ, where θð·Þ is the
Heaviside step function. Then one can think of the gas
as a two-component fluid. The idea is to take Λ large
enough so that Λ ≫ max½ðmg=ℏÞ; ðCrξmg=ℏÞ1=4�, where ξ
is the correlation length of the gas.
We focus first on the component with rapidity distribu-

tion ρ>Λ. Within a cell of size ≳ξ, large enough so that the
particles it contains are not correlated with the rest
of the system, the typical number of rapidities in an
interval ½q; qþ dq� is ξρ>ΛðqÞdq. This implies that the
typical spacing between neighbor rapidities is of order
Δq ∼ 1=ðξρ>ΛÞ ∼ 1=ðξCr=Λ4Þ ≫ mg=ℏ. This ensures
that this fluid component behaves as an ideal Bose gas.
In particular, its momentum distribution equals its
rapidity distribution: w>ΛðpÞ≃ρ>ΛðpÞ≃θðp2−Λ2ÞCr=p4.
Moreover, the condition Λ ≫ max½ðmg=ℏÞ; ðCrξmg=ℏÞ1=4�
also ensures that the two fluid components do not interact
with each other.
The other fluid component is characterized by a rapidity

distribution ρ<Λ with no tails, so it satisfies Tan’s relation.
Thus, its momentum distribution w<ΛðpÞ decays as Cc=p4

at large p.
The total momentum distribution wðpÞ of the gas is the

sum of the momentum distributions of both components,
which leads to Eq. (4).
Having established the key formula (4), we now turn to

the question: Is there a physical process that produces such
peculiar states with 1=q4 tails in their rapidity distribution?
We are aware of only one such example in the literature so
far: a sudden quench of the interaction strength g, which
relaxes to a state with Cr > 0 [52]. In the rest of this Letter

we argue that atom losses, which are ubiquitous in experi-
ments, always generate these peculiar states.
Losses and 1=q4 tails of the rapidity distribution.—We

consider the general case of local K-body losses, where
K ¼ 1; 2; 3;… is the number of atoms lost in each loss
event. Depending on the experiment, losses are typically
dominated by K ¼ 1, K ¼ 2 [53,54], or K ¼ 3 processes
[26,27], but it is convenient to keep K arbitrary. The atom
density then decays as dn=dt ¼ −KGgðKÞð0ÞnK , where
G is a constant with units of lengthK−1 · time−1 that
characterizes the loss rate. Following Ref. [28] (see also
Refs. [55,56]), we assume that the loss rate GnK−1 is much
smaller than the relaxation time, so that the gas relaxes to a
generalized Gibbs ensemble after each loss event.
This allows to represent the evolution of the gas under
losses by its time-dependent rapidity distribution [28].
Let us assume that, at t ¼ 0 the rapidity distribution of

the gas has no 1=q4 tails; i.e., Crðt ¼ 0Þ ¼ 0. For instance,
the gas could be in a thermal state. We want to show that at
t ¼ 0, dCr=dt > 0, implying that the rapidity distribution
will develop nonvanishing 1=q4 tails.
To do this, we elaborate on the microscopic mechanism

presented in the introduction. Consider the many-
body wave function ψ t¼t−l

ðz1;…; zNÞ just before a loss
event occurring at time tl and position zl. Right after the
loss, the wave function of the remaining N − K atoms is
ψ̃ t¼tþl

ðz1;…; zN−KÞ ¼ LK=2ψ t¼t−l
ðz1;…; zN−K; zN−Kþ1 ¼

zl;…; zN ¼ zlÞ. As a reminiscence of its cusp singularities
before the loss, the wave function ψ̃ t¼tþl

still has a cusp at
zj ¼ zl (j ¼ 1;…; N − K). Following the calculation of
Ref. [3], we find that it results in a contribution Cð1 lossÞ=p4

to the momentum distribution, with the amplitude

Cð1 lossÞ ¼ ℏ3

2π
LK−1ðN − KÞ

Z
dz2…dzN−K

j∂z1ψ jz1→zþ
l

− ∂z1ψ jz1→z−
l
j2; ð6Þ

where the variables zN−Kþ1;…; zN in the integrand are
taken equal to zl. The boundary condition imposed by
the contact interaction gives ∂z1ψ jz1→z−

l
− ∂z1ψ jz1→zþ

l

¼
Kmg=ℏ2ψðz1 ¼ zl; z2;…; zN−Kþ1 ¼ zl;…zN ¼ zlÞ. Then,
using the expression of gðKþ1Þð0Þ in the first quantization,
we get

Cð1 lossÞ ¼ m2

2πℏ
nK2

L
g2gðKþ1Þð0Þ: ð7Þ

Here we have used the fact that, as N → ∞, N − K ≃ N
and N…ðN − KÞ ≃ NKþ1.
Next, we rely on formula (4), and argue that the

contribution (7) of one loss event to the momentum
distribution translates into the same contribution to the
rapidity distribution. Indeed, the contribution (7) is not
taken into account in the contact density Cc at time t ¼ tþl ;
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therefore, according to formula (4) it must appear in the tail
of the rapidity distribution:

Crjt¼tþ
l

− Crjt¼t−
l
¼ Cð1 lossÞ: ð8Þ

Like ρðkÞ, Cr is conserved by the Hamiltonian dynamics,
so this increase of Cr remains after relaxation to a
generalized Gibbs ensemble. Finally, we multiply this
result by LGnKgðKÞð0Þdt, the number of loss events
occurring in the system during a short time interval dt.
This leads to the initial growth rate

dCr

dt
ðt ¼ 0Þ ¼ m2

2πℏ
GnKþ1K2g2gðKÞð0ÞgðKþ1Þð0Þ: ð9Þ

This equation is the second main formula of this Letter. It
shows that dCr=dtjt¼0

> 0, such that Cr becomes nonzero.
Together with Eq. (4), it implies that the momentum
distribution develops tails that are larger than what is
expected from Tan’s relation.
We stress that Eq. (9) gives only the initial growth rate of

the tail of the rapidity distribution. At later times, its
evolution will also involve additional damping effects.
Indeed, under atom losses the gas ultimately evolves to
the vacuum; therefore the whole rapidity distribution—
including its tails—will go to zero at very long times. The
calculation of the damping of Cr at longer times is not
obvious. Below we obtain further results in the hard-core
and quasicondensate regimes.
Exact results in the hard-core regime.—In the hard-core

regime (g → ∞), only one-body losses are relevant, since
gðKÞð0Þ ¼ 0 for K > 1. Thus, in this paragraph we fix
K ¼ 1. The evolution of the rapidity distribution ρðt; qÞ
under losses has been computed recently in Ref. [28], for an
arbitrary initial distribution ρðt ¼ 0; qÞ; see in particular
Eq. (14) in that reference. Here we exploit that general
result to study the evolution of the 1=q4 tail.
Expanding Eq. (14) of Ref. [28] for large q, we find that

ρðt; qÞ ¼ CrðtÞ=q4 þ oð1=q4Þ, with

CrðtÞ¼
4ℏm
π

½nð0Þeð0Þ−jð0Þ2=ð2mÞ�e−Gtð1−e−GtÞ: ð10Þ

Here jðtÞ ¼ R
qρðt; qÞdq and eðtÞ ¼ R

q2=ð2mÞρðt; qÞdq
are the momentum and energy density, respectively [57].
The right-hand side of Eq. (10) involves these quanti-
ties at time t ¼ 0. Using the fact that, under losses, the
particle, momentum, and energy densities evolve as
nðtÞ ¼ nð0Þe−Gt, jðtÞ ¼ jð0Þe−Gt, and eðtÞ ¼ eð0Þe−Gt,
respectively, in the g → ∞ limit [49], the right-
hand side can also be written as ð4ℏm=πÞ½nðtÞeðtÞ−
jðtÞ2=ð2mÞ�ðeGt − 1Þ.
We note that formula (10) provides a nontrivial check of

our general prediction (9) for the initial growth rate: using

the standard identity limg→∞n2g2gð2Þð0Þ ¼ ð8ℏ2=mÞ½ne −
j2=ð2mÞ� [49], one sees that Eqs. (9) and (10) agree.
Importantly, Eq. (10) also allows us to compare the

amplitude CrðtÞ with the contact density at time t. Using
again the standard identity above, together with Eq. (3), we
find

CrðtÞ=CcðtÞ ¼ expðGtÞ − 1: ð11Þ

We see that the ratio of the amplitude Cr to the contact
density Cc grows exponentially as time increases. This is
our third main result: not only does the term Cr=p4

contribute to the momentum distribution, but it can also
become dominant compared to the contact term. Numerical
calculations of wðpÞ [49] show that, for an initial degen-
erate gas, wðpÞ ≃ ðCr þ CcÞ=p4 as soon as p≳ 7ℏn0.
We now investigate the ratio CrðtÞ=CcðtÞ for weak

repulsion.
Results for the quasicondensate.—In the quasiconden-

sate regime, correlations between atoms are weak and
gðjÞð0Þ ≃ 1 for all j. An effective description of the gas is
obtained by a phase-density representation [58]: in Eq. (2),
one writes the atomic field Ψ as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ δn

p
eiθ, where θ

and δn are phase and density fluctuation fields
(with δn; ∂θ=∂z ≪ n), which satisfy the commutation rela-
tion ½δnðzÞ; θðz0Þ� ¼ iδðz − z0Þ. The Bogoliubov approxi-
mation then leads to a collection of independent
harmonic modes. The Hamiltonian for each mode is
of the form Hk ¼ εkb

þ
k bk (up to the additive constant),

where bþk (k ∈ ð2πℏ=LÞZ) is a linear combination of
the Fourier modes δnk and θk [49,58] and εq ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2=2mÞ½ðk2=2mÞ þ 2gn�

p
. The Bogoliubov creation

and annihilation operators satisfy ½bk; bþk0 � ¼ δk;k0, and the
occupation of each mode is αk ¼ hbþk bki.
The effect of slow losses on the Bogoliubov mode

occupations αk has been analyzed in Refs. [29,30,59,60].
In Ref. [29], the effect of K-body losses on αk was
computed for small k. In Refs. [30,59], the evolution of
αk was studied for any k, but only K ¼ 1 was considered.
Combining these results, we are able to compute dαk=dt for
any K and k [49]. The result reads

dαk
dt

¼ K2GnK−1
�
−αk −

1

2
þ 1

4

�
εk

k2=ð2mÞ þ
k2=ð2mÞ

εk

��
:

ð12Þ

The precise link between Bogoliubov excitations and
Bethe quasiparticles is not obvious. However, it has been
discussed by Lieb [61] (see also Ref. [62]), who identifies,
for states close to the ground state, the large-k Bogoliubov
excitations to Bethe quasiparticles with rapidities q ≃ k.
Therefore a Cr=q4 tail in the rapidity distribution translates
to Bogoliubov mode occupations decaying as αk ≃
2πℏCr=k4 for large k [63]. We have checked [49] that
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this identification q ≃ k, together with the known exact
expression for gð1ÞðzÞ [58], is compatible with our Eq. (4)
within the framework of Bogoliubov theory, as it should.
Using the large-k expansion of εk in Eq. (12), we find

that the amplitude of the 1=q4 tails of ρðqÞ evolves
according to

dCr

dt
¼ K2GnK−1

�
−Cr þ

m2

2πℏ
g2n2

�
: ð13Þ

This differential equation can be easily solved [49], which
allows us to obtain CrðtÞ at all times. In particular, at long
times, we find that the ratio of CrðtÞ to the contact density
CcðtÞ ¼ ðm2=2πℏÞg2nðtÞ2 [Eq. (3), with gðjÞð0Þ ¼ 1]
behaves as

CrðtÞ
CcðtÞ

¼
t→∞

8><
>:

expðGtÞ if K ¼ 1;

2 logðGnK−10 tÞ if K ¼ 2;

K=ðK − 2Þ if K ≥ 3:

ð14Þ

This is the fourth main result of this Letter. For K ¼ 1, one
finds the same behavior as in the hard-core regime. For
K ≥ 3, the ratio takes an asymptotic value. For instance, the
ratioCr=Cc goes to 3 for three-body losses, so the tail of the
momentum distribution C=p4 is four times larger than its
value predicted by Tan’s relation (1).
Experimental prospects.—An experimental test of the

predictions of this Letter is within reach in current cold
atom setups. There exist different ways of measuring the
momentum distribution of 1D gases [64–67]. Because of
the small amplitude of the tails, such a measurement
requires a high dynamical range, which can be achieved,
for instance, using metastable atoms [68]. Usually, gases in
experiments are nonuniform. Within a local density
approximation, our results are straightforwardly general-
ized to include a trapping potential [49].
Conclusion.—On the theory side, our results open

several research lines. First, for quantitative comparison
with experiment, one should compute the evolution of the
rapidity tails in intermediate regimes of the 1D gas. For
this, one can in principle rely on the method presented in
Ref. [28], although an improvement of the numerical
efficiency of that method would be required (see also
the recent analytical progress in Ref. [69]). Second, our
results can probably be extended to integrable 1D Fermi
gases [70]. Third, it would be interesting to investigate the
effects of losses in higher dimension. The singularity of the
wave function at the position of the lost atoms is also
expected to have a effect that remains to be elucidated.
Finally, it would be interesting to study loss processes that
are not purely local or not purely Markovian. How would
this impact the development of the momentum tails?
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