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A network of propagating nonlinear oscillatory modes (waves) in the human brain is shown to generate
collectively synchronized spiking activity (hypersynchronous spiking) when both amplitude and phase
coupling between modes are taken into account. The nonlinear behavior of the modes participating in the
network are the result of the nonresonant dynamics of weakly evanescent cortical waves that, as shown
recently, adhere to an inverse frequency–wave number dispersion relation when propagating through an
inhomogeneous anisotropic media characteristic of the brain cortex. This description provides a missing
link between simplistic models of synchronization in networks of small amplitude phase coupled
oscillators and in networks built with various empirically fitted models of pulse or amplitude coupled
spiking neurons. Overall the phase-amplitude coupling mechanism presented in the Letter shows
significantly more efficient synchronization compared to current standard approaches and demonstrates
an emergence of collective synchronized spiking from subthreshold oscillations that neither phase nor
amplitude coupling alone are capable of explaining.
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Brain electromagnetic activity shows an abundance of
oscillatory patterns across a wide range of spatial and
temporal scales making the question of their interaction and
synchronization an important issue that has been widely
discussed in the literature [1]. All the typical approaches to
the question of synchronization of multiple interconnected
(neural) networks can be divided into two big groups. The
first approach works with a network comprised of multiple
harmonic oscillators in a small (and constant) amplitude
limit [2–8]. The second approach studies networks of
multiple empirical nonlinear elements, e.g., various var-
iants and simplifications of heavily over-fitted Hodgkin-
Huxley neurons [9], including a multitude of ad hoc
“integrate and fire” (IF) neuron models [1,10–15]. Both
approaches have their own advantages and drawbacks, but
the main problem is that although they are often considered
as complementary, they are not just incompatible, they are
based on contradictory assumptions. The first approach
assumes that a phase of oscillations is the cornerstone of the
synchronization process and all the importance of the
amplitudes is second to none, hence the oscillating ampli-
tudes can be safely assumed to be constant. The second
approach on the contrary deems phase information to be
nothing more then a subthreshold noise that can be safely
thrown away completely and just accumulates amplitudes
of the arriving spikes or pulses when processing an
input from multiple IF network members hoping that the
discarded individual subspike phase information will

magically be resurrected in a new form as a population
averaged synchronous phase.
Recently it was experimentally discovered that long-range

(at the distance of 60 mm apart or even more) correlations
exist in the human cortex in the 100–400 Hz frequency range
[16]. This frequency range corresponds to 2.5–10 ms signal
periods, i.e., it is at or even below the duration of a single
neuronal spike and, hence, it requires coherent spiking at the
single neuron level and not just some average population
synchrony. Neither of the two methods of phase coupled
harmonic oscillators or pulse coupled IF neurons are capable
of explaining this level of spiking synchrony as it is
acknowledged in the literature that “there is no known
mechanism through which the spikes of multiple neurons
could be synchronized so precisely” [17].
The recently developed theory of weakly evanescent

cortical waves (WETCOWs) [18] provides a mechanism
appropriate for the explanation of long-range high fre-
quency correlations and multiple wave modes and spikes
synchronization up to and below a single spike duration
(hypersynchronous spiking) that follows directly from
linear and nonlinear properties of wave modes. The linear
wave dispersion relation predicts an inverse frequency–
wave number dependence, hence the correlations at the
highest frequencies should manifest themselves at the
longest spatial scales in agreement with properties reported
in Ref. [16]. The model of nonlinear interactions of those
wave modes provides a mechanism of generation of spiking
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activity from their collective input, hence it is appropriate
for explaining the physical origin of hypersynchronous
spiking.
In this Letter we show that the nonlinear model of brain

wave modes developed in Ref. [18] can be reformulated
using a simple but general Hamiltonian form that includes
all possible nonlinear interaction at the lowest order of
nonlinearity. Dynamical equations defined by this wave
Hamiltonian reproduce oscillatory activity from the linear
(harmonic) wave regime to nonlinear spiking modes.
Extending the Hamiltonian to include a pairwise coupling
appropriate for a network of multiple nonlinear wave
modes results in amplitude and phase coupled nonlinear
equations that show more efficient synchronization com-
paring to just phase coupling alone. For sufficiently strong
coupling the spiking activity that emerges at a different part
of the network from the small amplitude (below spiking
detection or subthreshold level) oscillations is synchronized
not just in some averaged (spiking population) sense but at
a single spike level. This amplitude and phase coupling
approach thus provides a missing bridge between phase
only coupling models of harmonic oscillator networks and
amplitude (pulse) coupling models of IF neurons.
A nonlinear Hamiltonian form for an anharmonic oscil-

latory mode with a complex amplitude a in the lowest order
of nonlinearity can be assumed to have the expression

Hsða; a†Þ ¼ Γaa† þ aa†½βaaþ βa†a
† − 2αðaa†Þ1=2� ð1Þ

where a is a complex oscillation amplitude and a† is its
conjugate. The first term Γaa† denotes the harmonic
(quadratic) part of the Hamiltonian with the complex
valued frequency Γ ¼ iωþ γ that includes both a pure
oscillatory frequency ω and a possible weakly excitation or
damping rate γ. Because of the presence of this γ ≠ 0, the
conjugate † does not denote just the complex conjugate
but more generally it also describes the growth or decay of
the amplitude as a result of the presence of excitation
or damping, e.g., for the growing oscillatory amplitude
a ∼ eγtþiωt the conjugate will describe the correspondent
decaying part as a† ∼ e−γt−iωt.
The second anharmonic term (that is supposed to be

cubic in the lowest order of nonlinearity) can be considered
to include a product of the harmonic term aa† and linear (in
jaj) term that can be expressed in the most general form as
βaaþ βa†a

† − 2αðaa†Þ1=2 (where α, βa and βa† are the
complex valued strengths of nonlinearity, and in general we
do not assume that the Hamiltonian is in self-adjoint form,
hence in general β†a ≠ βa†). The terms with either a3 or a†3

do not appear in the Hamiltonian because for propagating
waves they do not satisfy the wave number resonance
conditions [18,19].
It is worth noting that Eq. (1) is very general and can be

used for a description of various anharmonic oscillatory
physical processes valid to the lowest order of amplitude

nonlinearity. In this Letter we have used it as a reformu-
lation of weakly evanescent brain wave modes whose linear
and nonlinear physical properties were presented in
Ref. [18]. In this case, the nonlinear terms can be identified
with the nonresonant interactions of linear wave modes
propagating in either the same (βa) or the opposite (βa†)
directions, or with the interactions with phase averaged
nonpropagating modes (α).
An equation for the nonlinear oscillatory amplitude a

then can be expressed as a derivative of the Hamiltonian
form

da
dt

¼ ∂Hs

∂a† ≡ Γaþ 2βa†aa
† þ βaa2 − 3αaðaa†Þ1=2: ð2Þ

Substituting a ¼ ãeiωt, a† ¼ ã†e−iωt, βa ¼ β̃ae−iδa ,
βa† ¼ 1=2β̃a†e

iδa† , and α ¼ 1=3α̃, dropping the tilde, this
can be rewritten as

da
dt

¼ γaþ βa†aa
†e−iðωt−δa† Þ þ βaa2eiðωt−δaÞ − αaðaa†Þ1=2:

ð3Þ

Equation (3) is similar (up to the choice of the constants)
to Eq. (29) of Ref. [18] but has an additional oscillatory
term that was not included in Ref. [18]. Substituting in
Eq. (2) a ¼ ãeγtþiωt and a† ¼ ã†e−γt−iωt instead of just the
oscillatory complex exponents makes it is clear that those
two terms represent the damped βa† ãã

†e−γt−iðωt−δa† Þ and the
growing βaã2eγtþiðωt−δaÞ parts of the nonlinear input and the
spiking solutions can be obtained even when the damped
term is neglected. Nevertheless, to analyze the more general
case we will keep both of those terms and will show later
that it is the asymmetry between those terms that provides
an explanation for the presence of the phase difference that
plays an important role in collective synchronization and
hypersynchronous spiking.
Splitting Eq. (3) into an amplitude-phase pair of equa-

tions using a ¼ Aeiϕ and assuming βa, βa† and α to be real
gives equations

dA
dt

¼ γAþ A2ðβa† cosΩa† þ βa cosΩa − αÞ; ð4Þ

dϕ
dt

¼ Að−βa† sinΩa† þ βa sinΩaÞ; ð5Þ

where Ωa ≡Ω − δa, Ωa† ≡ Ω − δa† , and Ω≡ ϕþ ωt.
These are similar to Eqs. (31) and (32) of Ref. [18] and
show the same solution behavior, i.e., transition from linear
to nonlinear oscillation to spiking to nonoscillatory regime
with an increase of excitation γ as it is evident from
Fig. 1 [20].
It should be noted that the asymmetries (i.e., the

differences between the rising and the falling edges of
the spikes) evident in the spiking solutions obtained both in
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Fig. 1 and in Ref. [18] (where additional asymmetric
waveforms were presented) correspond to a special case
that does not occur if a self-adjoint symmetry of the
Hamiltonian form Eq. (1) is assumed. In a self-adjoint
form (i.e., for βa† ¼ β†a) the Hamiltonian in Eq. (1) can be
alternatively expressed as

Hsða; a†Þ ¼ Γaa† þ aa†½F2þ þ F2
−� ð6Þ

where Fþ and F− are defined as

Fþ ¼
ffiffiffiffiffiffiffiffiffiffi

β†þa†
q

þ ffiffiffiffiffiffiffiffi

βþa
p ð7Þ

F− ¼
ffiffiffiffiffiffiffiffiffiffi

β†−a†
q

−
ffiffiffiffiffiffiffiffi

β−a
p

ð8Þ

and correspond to a symmetric (F†
þ ¼ Fþ) and anti-

symmetric (F†
− ¼ −F−) combinations of the complex

oscillatory modes a and a†, with complex parameters β−
and βþ satisfying the relations

βa ¼ β− þ βþ; α ¼ jβ−j − jβþj: ð9Þ

The parameters when the spiking solutions were
obtained both in Fig. 1 and in Ref. [18] correspond to
α > 0, ⇒ jβ−j > jβþj, ⇒ jF−j > jFþj and the opposite
case jF−j < jFþj results in diverging solutions. The fixed
difference in the power between − and þ modes can be
accompanied by various phase shifts, therefore we intro-
duced those different δa and δa† phases in Eq. (3). As it was
shown in Ref. [18] it is this difference in phases that is

responsible for the asymmetries in the shape of the spikes.
Here we have augmented the theory presented in Ref. [18]
to account for these phase differences as a consequence of
symmetry considerations. Though the asymmetries in the
spiking waveforms caused by this phase difference might
appear subtle, this is an important aspect of the theory as
these asymmetries are observed experimentally [17]. but
have not been explained by any existing theory. The effect
on synchronization, however, is not subtle at all, as we
demonstrate below.
These symmetry considerations create some (although

very distant) analogy with symmetry differences between
bosons and fermions. The antisymmetric form allows
organization of the oscillations into highly ordered spike
sequences. That is, it enforces in some sense the single
oscillation quanta-single state “fermionic”-like selection
rule by only allowing generation of a and a† pairs. On the
contrary, the symmetric form results in accumulation of
oscillations in disordered divergent “bosonic" states.
However the important point is that the observational fact
of asymmetric spiking waveforms suggests the existence of
distinct symmetric and antisymmetric brain wave states.
The origin of these is unknown.
As it was shown in Ref. [18] the spiking solution of

Eqs. (31) and (32) of Ref. [18] (that are similar to the
system Eqs. (4) and (5) of this Letter) appears near the
critical point where the oscillatory state undergoes bifur-
cation and transitions to a nonoscillatory regime as γ
reaches the value above the critical point. Assuming as
in Ref. [18] that the nonoscillatory regime requires that
dA=dt → 0 and dϕ=dt → −ω (or ϕ → −ωtþ ϕ0, with ϕ0

being some arbitrary phase) as t → ∞, it is easy to see that
the relative contribution of the excitation or damping in the
amplitude exponents is proportional to γ=ω which is given
by

γ=ω ¼ α − βa† cosðϕ0 − δa†Þ − βa cosðϕ0 − δaÞ
βa† sinðϕ0 − δa†Þ − βa sinðϕ0 − δaÞ

; ð10Þ

and for the parameters of Fig. 1 this defines a range
−2=5 < γ < 2 with bifurcation at γcrit ¼ 2 in excellent
agreement with the transition from the oscillatory to non-
oscillatory regime obtained in the numerical solutions
of Fig. 1.
The Hamiltonian form for a network of multiple coupled

oscillators can then be written as

Hða; a†Þ ¼
X

i

�

Hsðai; a†i Þ þ
X

j≠i
ðairija†j þ a†i r

�
ijajÞ

�

ð11Þ

where a≡ faig and rij ¼ RijeiΔij is the complex network
adjacency matrix with Rij providing the coupling power
and Δij taking into account any possible differences in

FIG. 1. Linear and nonlinear oscillations, spiking, and the
nonoscillatory regime of the solution of Eqs. (4) and (5) at
different levels of excitation (γ ¼ 0.25, 1, 1.98, and 2: blue,
green, red, and magenta). Time is in the units of 2π=ω and the
amplitude a is in the arbitrary units. The rest of the parameters are
the same for all plots: ω ¼ 1, βa ¼ 2, βa† ¼ 1, α ¼ 3, δa† ¼ π=4,
and δa ¼ −π=4.
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phase between network nodes. And an equation for the
complex amplitude ai (again after a substitution of
ai¼ ãieiωit, a†i ¼ ãi†e−iωit, βa¼ β̃ae−iδa , βa† ¼1=2β̃a†e

iδa† ,
α ¼ 1=3α̃ and dropping the tilde)

dai
dt

¼ γiai þ βa†aia
†
i e

−iðωit−δa† Þ þ βaa2i e
iðωit−δaÞ

− αaiðaia†i Þ1=2 þ
X

j≠i
r�ijaje

iðωj−ωiÞt ð12Þ

now includes the coupling term. That gives for the
amplitude Ai and the phase ϕi a set of coupled equations

dAi

dt
¼ γiAi þ A2

i ðβa† cosΩi
a†
þ βa cosΩi

a − αÞ
þ
X

j≠i
RijAj cosðΩj −Ωi − ΔijÞ; ð13Þ

Ai
dϕi

dt
¼ −A2

i ðβa† sinΩi
a†
− βa sinΩi

aÞ
þ
X

j≠i
RijAj sinðΩj −Ωi − ΔijÞ; ð14Þ

where Ωi
a ≡Ωi − δa, Ωi

a†
≡Ωi − δa† , Ωi ≡ ϕi þ ωit,

and the coupling terms are dependent upon
Ωj − Ωi ¼ ðϕj − ϕiÞ þ ðωj − ωiÞt. In the small (and
constant) amplitude limit (Ai ¼ const) this set of equations
turns into a set of phase coupled harmonic oscillators with a
familiar sinðϕj − ϕi � � �Þ form of phase coupling. But in its
general form Eqs. (13) and (14) include also the phase
dependent coupling of amplitudes ½cosðϕj − ϕi � � �Þ�
that dynamically defines if the input from j to i will either
play excitatory (jϕj − ϕi þ � � � j < π=2) or inhibitory
(jϕj − ϕi þ � � � j > π=2) roles (this is in addition to any
phase shift introduced by the static network attributed
phase delay factors Δij).
The relatively simple set of Eqs. (13) and (14) derived

from the simple but nevertheless general Hamiltonian form
Eq. (11) is capable of describing rich oscillatory and
nonlinear dynamics as well as more efficient synchroniza-
tion compared to the phase-only coupled system of
harmonic oscillators even for the relatively weak coupling.
Figure 2 shows a comparison of synchronization in a
weakly coupled network of phase-only constant amplitude
harmonic oscillators vs amplitude and phase coupling of
nonlinear system Eqs. (13) and (14) [20]. The network of
identical harmonic oscillators (with the same frequency
ω ¼ ω0 ¼ 1) coupled in a ring with just 4 nearest neighbors
(Rij ¼ 0, ji − jj > 2) is still showing a transient behavior at
t ¼ 200 with the order parameter r ¼ 0.32 [panels (a) and
(b)] whereas the strongly synchronized spiking with mean
frequency ω̄ ∼ 0.175ω0 is formed as early as about t ¼ 10
for the nonlinear amplitude and phase coupling system
Eqs. (13) and (14) with the order parameter r ¼ 0.9999
[panels (c) and (d)].

For a network with multiple individual frequencies
ωi < ω0 ≡ 1 uniformly distributed between 0.1ω0 and ω0

and with only a weak forcing at γi ¼ 0.25, that is not
sufficiently strong for generating spikes at individual
uncoupled modes (as it can be seen from panels (a)
and (b) of Fig. 3, where all the amplitudes of oscillations
are below 0.1 and the phases are clearly showing the
expected spread from 0.1 to 1, the order parameter
r ¼ 0.0792), the coupling triggers collectively synchron-
ized spiking at multiple frequencies [panels (c) and (d)]
for a local nearest neighbor coupling or at a single mean
frequency [panels (e) and (f)] for a global coupling (i.e.,
all-to-all or coupling of every node to all nodes in the
network).
This level of synchronization effectiveness is maintained

as a number of network nodes N increases and goes to
infinity as can be seen in Fig. 4 [panel (c)]. The network of
Fig. 4 includes the large number of nodes N ¼ 10032 split
into 48 local groups located in different cortical regions
[some of the nodes from several regions are shown in panel
(a)] with 55 mm the mean distance between regions (and
61 mm the standard deviations). Each node is connected to
500 different nodes with 10–11 nodes from every region. The
linear network frequencies are randomly distributed from
1 Hz to 1 KHz. A plot of pairwise node correlations averaged

FIG. 2. Comparison of synchronization of phase-only constant
amplitude harmonic oscillators [(a),(b)] with amplitude-phase
coupling of the nonlinear Eqs. (13) and (14) model [(c),(d)].
Network of 100 ring connected oscillators (Rij ¼ 0.025, ji − jj ≤
2 and Rij ¼ 0, ji − jj > 2) shows only a transient weekly
synchronized state (the order parameter r ¼ 0.32) in the
phase-only system [(a),(b)] vs strongly synchronized spiking
(the order parameter r ¼ 0.9999 and still gradually increasing) in
(c) and (d). Single frequency (ω≡ ω0 ¼ 1) was used for both
cases and βa ¼ 2, βa† ¼ 1, α ¼ 3, γ ¼ 1.875, δa† ¼ π=4, δa ¼
−π=4 were the parameters for the nonlinear Eqs. (13) and (14)
system.
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across all pairs [shown in panel (b)] clearly demonstrates the
peak between 300 and 500 Hz in agreement with Ref. [16].
In conclusion, in this Letter we have presented a

reformulation of the nonlinear model of weakly evanescent
cortical wave (WETCOW) modes developed in Ref. [18]
into a Hamiltonian form using a simple but general
Hamiltonian representation that includes all possible non-
linear interactions at the lowest order of nonlinearity.
Dynamical equations defined by this wave Hamiltonian
reproduce oscillatory activity from the linear (harmonic)
wave regime to nonlinear spiking modes. Extending the
Hamiltonian to include a pairwise coupling appropriate for
a network of multiple nonlinear wave modes results in
amplitude and phase coupled nonlinear equations that show
more efficient synchronization comparing to just phase
coupling alone. For sufficiently strong coupling the spiking
activity that emerges at different parts of network from the
small amplitude (below spiking detection or subthreshold
level) oscillations is synchronized not just in some averaged
(spiking population) sense but at a single spike resolution
or below. This amplitude and phase coupling approach thus
provides a missing link between phase only coupling
models of harmonic oscillator networks and amplitude
(pulse) coupling models of IF neurons, and has implica-
tions for understanding experimentally observed synchro-
nous behavior in the human brain.
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