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The recently discovered Fickian yet non-Gaussian diffusion (FnGD) is here finely tuned and investigated
over a wide range of probabilities and timescales using a quasi-2D suspension of colloidal beads under the
action of a static and spatially random optical force field. This experimental model allows one to
demonstrate that a “rapid” FnGD regime with a diffusivity close to that of free suspension can originate
from earlier subdiffusion. We show that these two regimes are strictly tangled: as subdiffusion deepens
upon increasing the optical force, deviations from Gaussianity in the FnGD regime become larger and more
persistent in time. In addition, the distinctive exponential tails of FnGD are quickly built up in the
subdiffusive regime. Our results shed new light on previous experimental observations and suggest that
FnGD may generally be a memory effect of earlier subdiffusive processes.
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The hallmark of standard Brownian diffusion is twofold:
the particle mean square displacement (MSD) increases
linearly in time, which is also known as Fickian behavior,
and the distribution of displacements is Gaussian. In fact,
“Fickianity” and “Gaussianity” were thought to be strictly
related since the time of Einstein’s celebrated “random
walk” description of Brownian motion. Seemingly, this
relationship was more recently confirmed in other circum-
stances of thermal motion, generally known as anomalous
diffusion [1–3], where an MSD that is nonlinearly increas-
ing in time is typically accompanied by a non-Gaussian
displacement distribution.
Around a decade ago, however, the discovery of Fickian

yet non-Gaussian diffusion (FnGD) broke up such a
well-established scenario [4]. Granick’s group indeed
found that colloidal tracers moving on phospholipid bilayer
tubes and in actin gels display a linear MSD coexisting with
a non-Gaussian displacement distribution [5]. Following
these pioneer observations, several experiments identified
FnGD in an increasing number of soft materials, including
hard-sphere colloids [6], polymers on solid interfaces [7],
nanospot systems [8,9], cells, and other active matter
[10–14]. Further evidences of FnGD have been obtained
by numerical simulations [15–17]. Such a wide variety of
observations suggests that this phenomenon is quite
ubiquitous in soft matter, although contrasting instances
have also been provided [18]. (For soft materials, Gaussian
but non-Fickian dynamics has also been reported [19,20].)
A few elegant models have been proposed to capture the

main benchmarks of FnGD [21–31]. Many of these models
share the idea of a “diffusing diffusivity,” as introduced by
Chubynsky and Slater [21]: the motion of a given particle is

characterized by a varying diffusivity, either because the
particle explores a heterogeneous but static structure of the
matrix or because the matrix itself is evolving. The
presence of some structural or dynamical heterogeneities
of the environment seems indeed to be a a common feature
of the wide variety of systems displaying FnGD. The
multiplicity of relevant time and length scales arising from
the heterogeneous nature of the environments makes
experiments intrinsically challenging. The complex nature
of the environment makes it difficult indeed to control its
properties with high precision, and typically results in small
ensembles of trajectories with durations typically limited to
two decades in time. Conversely, large statistics and wide
observation times would be required to sample the non-
Gaussian tails [4] of the displacement distribution and to
study both the short-time precursors and the long-time
evolution of FnGD.
It so clearly appears that a finely controlled experimental

model for an in-depth study of FnGD is on demand. Here
we identify one such model: a very dilute monolayer of
micron-sized hard-sphere colloids in water subjected to a
weak, time-independent force field produced by a spatially
stochastic distribution of optical intensities, also known as a
speckle pattern [32]. Because of thermal fluctuations,
tracers move in the static energy landscape generated by
the speckle, which resembles popular theoretical models
for heterogeneous diffusion [33,34]. A similar system was
first introduced in a pioneering study that focused instead
on a different range of control parameters with the aim of
generating a subdiffusive, glassylike dynamics at inter-
mediate times [35]. The Fickian regime, instead, was not
fully attained over the observation time [35]. Other
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inspiring efforts, both numerical and experimental, then
highlighted the tunability of this type of system [36,37].
In this Letter, we demonstrate that, with a judicious

choice of the characteristic parameters, the considered
system turns into an optimal experimental model for
FnGD. We are indeed able to tune the “strength” and
duration of FnGD finely by changing the optical power, and
succeed in monitoring an unprecedented range of time-
scales and displacement probabilities. This opens the way
to approach FnGD “from below” (i.e., from shorter times),
looking for precursors, and to shed light on the long-time
fate of this process. As a matter of fact, we find that FnGD
occurs after a subdiffusive regime that takes place at shorter
times; at the same time, we find that diffusivity is almost as
large as in the free suspension (speckle-free conditions), a
situation termed as “exceptionally rapid” by Granick’s
group [5].
In our setup, the static speckle is produced by a Spatial

Light Modulator implemented with a digital mask, which
allows highly reproducible realizations of the optical field
as well as easy changes of its features. We perform
experiments at different values of the optical power that
controls the average intensity of the force field. The
geometric properties of the patterns, determined by the
digital mask, are instead kept fixed in all experiments. The
quasi-2D nature of our systems makes it easy to track
colloidal beads by standard digital videomicroscopy. For
any given realization of the speckle, we can thus easily
replicate the experiment several times to obtain a large
number of long trajectories. [See the Supplemental Material
(SM) [38] for details on methods and experimental setup.]
Figures 1(a) and 1(b) show two realizations of the

speckle field: one “empty” and one with colloidal beads.
The speckle pattern is characterized by intensity patches,
also known as “grains.” The typical grain size was set to
ds ≈ 4 μm, i.e., slightly larger than the bead diameter
dp ¼ 2.31 μm. We chose such a grain size on purpose
to generate an environment akin to a soft matter matrix with
heterogeneities comparable to the tracer size, which
resembles, for instance, the conditions investigated
in Ref. [5].
From an ensemble of hundreds of trajectories, we compute

the MSD, Δx2ðΔtÞ ¼ h½xiðt0 þ ΔtÞ − xiðt0Þ�2ii;t0 , and

the probability distribution of particle displacement,
pðjΔxj;ΔtÞ ¼ hδðjΔxj − jxiðt0 þ ΔtÞ − xiðt0ÞjÞii;t0 , where
hii;t0 denotes averaging over trajectories and time origins [45].
We start by demonstrating that our model system clearly

displays FnGD, focusing on the experiment at the largest
optical power, Ψ ¼ 0.67 W. Figure 2(a) shows indeed
that, over the whole considered time span, the MSD
displays a Fickian behavior, hΔx2ðΔtÞi ¼ 2DΔt, where
D ¼ 0.031 μm2 s−1 is the diffusion coefficient. At any Δt
within the time span of panel (a), however, the displacement
distribution strongly deviates from the expected Gaussian
gðjΔxj;ΔtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2=πhΔx2ðΔtÞi

p
exp ½−ðΔx2=2hΔx2ðΔtÞi�

[46], as shown in Fig. 2(b), that reports, as an example,
pðjΔxj;ΔtÞ for Δt ¼ 400 s [distributions corresponding to
other Δt in the same time span are shown in Fig. 3(c)]. An
excess probability is apparent for very small and large
displacements, whereas a defect probability is present in a
range of intermediate displacements. In addition, the tail of
the distribution reveals a clear exponential behavior con-
sistent with Diffusing Diffusivity and other theoretical
models for FnGD [21,22,30]. It is pðjΔxj;ΔtÞ ∝
exp½−jΔxj=λðΔtÞ�, where λðΔtÞ is a time-dependent decay
length, as discussed below. Overall, there is an impressive
similarity between the present results and those provided in
the original paper by Granick’s group [5]. In particular, we
invite the reader to compare Fig. 2 to the data for the actin gel
system reported in Figs. 3B and 3C of Ref. [5]. The only
relevant difference is in the timescale, which is larger in our
case. This is a trivial consequence of the fact that we have
chosen to employ large tracers to facilitate monitoring the
short-term dynamics. In contrast, in the experiments by
Granick’s group, the tracer radii were constrained to a range
of tens of nanometers by the mesh size of the actin gel.
Notice that, in order to fully appreciate the similarities with
Figs. 3B and 3C of Ref. [5], we have limited the data in
Fig. 2 to the same ranges achieved in that work, correspond-
ing roughly to two decades in time and probability. As a

(a) (b)

FIG. 1. At optical power Ψ ¼ 0.67 W, (a) and (b) show two
snapshots of the speckle field: “empty” and in the presence of the
colloidal tracers, respectively.

(a) (b)

FIG. 2. At optical power Ψ ¼ 0.67 W, (a) MSD normalized by
the square grain size as a function time. The dashed line hΔx2i ∝
t corresponds to a Fickian behavior. (b) Displacement distribution
pðjΔxj;ΔtÞ for time Δt ¼ 400 s. The dashed line corresponds to
the Gaussian distribution for a standard Brownian motion. The
data in both panels cover a limited portion of the investigated
range.
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matter of fact, we are able to explore much larger ranges, up
to about 4.5 decades in time and four decades in probability.
Indeed, Fig. 3(a) shows the MSD for the overall inves-

tigated time window that corresponds to a much higher
temporal resolution if compared to the data in Fig. 2. Hence,
the nature of the early dynamics underlying FnGD is
disclosed: at the very short time Δt < 1s, the data are
compatible with a linear increase, hΔx2ðΔtÞi ∝ Δt, but with
a “short-time” diffusion coefficient roughly four times larger
than the “long-time” one D. This regime can be understood
as a free diffusion occurring on a length range much smaller
than the characteristic grain size (up to Δx2i ≃ 300 nm2),
where the optical gradient does not yet affect the particle
motion. At the longer time Δt > 1 s, a moderate subdiffu-
sive regime takes place, extending roughly over two decades
in time, up to attaining the long-time Fickian diffusion. The
observation of the recovery of Fickianity from the short-time
side offers us the opportunity to quantitatively estimate the
characteristic time of this process, tf, which will correspond
to the upper boundary of subdiffusion. For this experiment,
we measure tf ≃ 400 s using the approach described later in
the text.
We now proceed to inspect the displacement distribution

at different Δt within the overall observation time. To
properly compare the distributions on such a wide range of
timescales (and length scales), from now on we will rescale
the axes as follows: jΔxj → jXj ¼ ðjΔxj=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2ðΔtÞi

p
Þ,

and pðjΔxj;ΔtÞ → PðjXj;ΔtÞ ¼ pðjΔxj;ΔtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΔx2ðΔtÞi

p

to preserve normalization. Notice that, with this rescaling,
the Gaussian distribution gðjΔxj;ΔtÞ corresponding to
“pure” Brownian motion becomes a universal time-
independent curve: GðjXjÞ ¼ ffiffiffiffiffiffiffiffi

2=π
p

e−ðX2=2Þ. Figures 3(b)
and 3(c) show the tails of a number of these distributions,
extending the range of probability of Fig. 2(b) by about
two decades. In particular, Fig. 3(b) focuses on a range of
Δt spanning the short-term and subdiffusive regimes
observed in the MSD, whereas Fig. 3(c) refers to values
of Δt from the onset of the Fickian regime tf to the end of

the observation time. At very short times, the data in panel
(b) are consistent with the standard Gaussian, as expected
for free diffusion. Entering the subdiffusive regime,
progressive deviations from the Gaussian are observed.
Well within the subdiffusive time window, the data seems
to “saturate” to a robust exponential decay over the
whole probability range considered (three decades),
PðjXj;ΔtÞ ≃ Ae−ðjXj=ΛÞ, where Λ is a nondimensional
decay length. Remarkably, panel (c) shows that such an
exponential behavior fully persists in the Fickian regime,
up to the largest observation time, with essentially the same
time-independent decay length Λ observed in the late
subdiffusive regime. This reveals that the distinctive tails
characterizing FnGD are already fully built during the
preceding subdiffusion without any clear sign of breakup of
the exponential behavior or any other type of time
evolution, at least over the duration of this experiment.
Concerning panels (b) and (c), notice that the existence

of a time-independent, nondimensional decay length Λ
corresponds to a dimensional decay length λ scaling as the
square root of time, which represents another analogy
between our experiments and the results of Granick’s group
[5,6]. Indeed, going back to the original variables, one finds
that λðΔtÞ ¼ Λ

ffiffiffiffiffiffiffiffiffiffiffiffi
2DΔt

p
.

We now show how our experimental setup readily
enables for tuning the “strength” of FnGD to unveil
other features of this phenomenon. Figure 4(a) displays
all MSDs, including two lower optical intensities,
Ψ ¼ 0.43 W and 0.61 W, and the speckle-free case
(Ψ ¼ 0). All the MSDs share a unique short-time linear
behavior characterized by the same diffusivity as the
speckle-free diffusion, once again confirming that this
early regime is a standard free diffusion. For the inter-
mediate time Δt > 1 s, subdiffusion is always present at
finite optical power but is more marked at larger Ψ. Then,
Fickian diffusion is restored at long times.
To better appreciate these features, Fig. 4(b) shows the

logarithmic derivative uðΔtÞ ¼ ðd log hΔx2ðΔtÞi=d logΔtÞ

(a) (b) (c)

FIG. 3. At optical powerΨ ¼ 0.67 W, (a) MSD over the whole investigated time span. For a direct comparison, the dataset of Fig. 2(a)
is also reported (crosses). (b),(c) Distributions of particle displacements after performing the rescaling discussed in the text at different
lag-times Δt within the time spans of the subdiffusive and FnGD regimes, respectively. The data cover the two decades in probability
below those presented in Fig. 2(b). The universal Gaussian distribution GðjXjÞ is reported as a continuous line. The dashed lines in both
panels are the same exponential law A exp ½−ðjXj=ΛÞ� obtained by fit to the data at the Fickian time Δt ¼ tf .
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in the time span 10−1–103 s, which provides an estimate of
the local slope of the MSDs in panel (a). In agreement with
the just presented MSD behavior, uðΔtÞ is consistent with
unity for short and long times and is instead smaller than
unity for intermediate times. The presence of a more
pronounced minimum at larger optical power clearly
indicates a “deeper” subdiffusion. On increasing the optical
power, the duration of the subdiffusive regime (the time
span where u < 1) and, in turn, the time for restoring the
long-time Fickian diffusion also increase. By monitoring
when uðΔtÞ first becomes consistent with unity, we
estimate the Fickian time tf ≃ 150, 200, 400 s for
Ψ ¼ 0.43, 0.61, 0.67 W, respectively.
Panel (a) also shows that, in the long-time Fickian

regime, changing the optical power leads to a variation
of the diffusion coefficient: on increasing the power, we
find a roughly fourfold reduction of D with respect to the
speckle-free value. A comparable, relatively small reduc-
tion of the diffusivity was observed for the phospholipid
tube system of Ref. [5,6], and the dynamics of that system
was therefore called “exceptionally rapid.” In this sense, we
are therefore also dealing with “exceptionally rapid”
dynamics, even at our strongest optical power. Our results,

however, clarify that such a “rapid dynamics” can occur
after a subdiffusive-crossover regime (commonly associ-
ated with slow dynamics, i.e., in glass-forming liquids).
We now move on to consider how PðjXj;ΔtÞ changes on

varying the optical power. Figure 4(c) compares the tails of
PðjXj;ΔtÞ at the onset of the Fickian regime Δt ¼ tfðΨÞ
for the three investigated powers. The distributions display
a clear-cut exponential behavior even at the smallest optical
power, demonstrating that FnGD is always clearly man-
ifested in our experiments. The nondimensional decay
length, however, appears to grow on enhancing the power:
precisely, Λ is found to be 0.44 and 0.74 at the smallest and
largest powers, respectively. (Notice that a constant Λ
would be implied by a pure exponential distribution in a
Fickian regime.) Figure 4(d) shows the tails of the
distributions at the intermediate optical power Ψ ¼ 0.61
W for different Δt. The trend at a not-too-large time
(Δt ≤ 400 s) is qualitatively similar to the one already
presented for the strongest optical power: robust exponen-
tial tails are already built in the subdiffusive regime and
persist for a while in the Fickian regime, with the decay
length Λ being essentially time-independent. However, a
major difference with the experiments at the largest power
emerges at long times: close to the edge of the observation
time, in fact, it is possible to appreciate deviations from the
exponential behavior, with a tendency to revert toward the
Gaussian distribution, in agreement with the long-time
prediction of Diffusing Diffusivity [21]. The data at the
smallest optical power are qualitatively similar, with the
exponential behavior being even less persistent. On the
other hand, the seemingly “frozen” exponential decay at the
highest power [see Fig. 3(c)] can now be understood in
terms of a time for restoring Gaussianity that is much larger
than the experimental timescale. While longer-lasting
experiments would be needed to quantitatively measure
a characteristic time for Gaussian recovery, it is quite clear
that, on increasing the optical power, not only the strength
but also the duration of the FnGD regime increase.
Conclusions.—In this Letter, we succeed in generating

FnGD by using a quasi-2D dilute colloidal suspension and
exploiting a static random optical field as a proxy of a soft
matter environment. FnGD is found to be closely tangled
with a temporary subdiffusion occurring at a shorter time,
up to two time decades earlier. In fact, the non-Gaussian
deviations characterizing FnGD are already fully built
during the preceding subdiffusion, and their magnitude
and duration increase as the subdiffusion becomes more
marked and lasts longer. Remarkably, such a subdiffusive
regime yet leads to an “impressively rapid” Fickian
dynamics. A short-time subdiffusion and an impressively
rapid Fickian diffusion were separately observed by
Granick’s group [5]. Some of the actin gel systems display
signs of subdiffusion followed by relatively slow Fickian
diffusion and no observable tendency to Gaussian recovery.
The phospholipid tube systems, in contrast, always show

(a) (b)

(c) (d)

FIG. 4. (a) MSD and (b) its logarithmic derivative uðΔtÞ ¼
ðd log hΔx2ðΔtÞi=d logΔtÞ as a function of time for the different
optical powers Ψ, as indicated. The dashed lines are fits to the
long-time Fickian regime hΔx2ðΔtÞi ¼ 2DΔt, with diffusivities
D ¼ 0.031, 0.059, 0.066, 0.106 μm2 s−1 for Ψ ¼ 0.67, 0.61,
0.43, 0 W, respectively. Tails of the distributions of particle
displacements after performing the rescaling discussed in the text,
(c), at lag-time Δt ¼ tfðΨÞ and for different optical powersΨ and
(d) for the intermediate optical power Ψ ¼ 0.61 W and different
times Δt ranging in the subdiffusive and FnGD regimes. In both
panels (c) and (d), the universal Gaussian distribution GðjXjÞ is
reported as a continuous line. The dashed lines are exponentials
A exp ½−ðjXj=ΛÞ� obtained by fitting the tails of PðjXj;Δt ¼ tfÞ
at the different powers.
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rapid Fickian diffusion with no hints of subdiffusion at
short times and a clear tendency to Gaussian recovery at the
longest time. Notice that roughly the same temporal
resolution was adopted in the experiments by Granick’s
group for the two systems. It is thus likely that a
subdiffusive regime would exist also for the phospholipid
tube systems but occurring below the temporal resolution
of those experiments. Our own experiments support this
possibility by showing that, as the time for recovering
Gaussianity decreases, the upper boundary of subdiffusion
also shifts to shorter times. Thus, the presence of short-time
subdiffusion may be a general precursor of FnGD rather
than a specific feature of our model system: indeed,
subdiffusion and FnGD are expected to share a common
origin in system heterogeneities. In this sense, the obser-
vation of seemingly different behaviors may have a merely
quantitative rather than a qualitative origin. In many
experimental situations, indeed, the subdiffusive regime
(and the associated activation events) may occur on time-
scales too small to be detected.
As for perspectives, insights may be provided by

measuring the statistics of residence times [47,48] or of
a properly defined single-particle diffusivity, which should
allow for comparison to Continuous Time RandomWalk or
Diffusing Diffusivity ideas [21,22,30]. It would also be
interesting to perform experiments by varying the speckle
grain size or using time-dependent speckle patterns to
mimic an environment evolving in time.

We acknowledge Flavio Seno for useful and inspiring
discussions.
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