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Recently, the search for an axion insulator state in the ferromagnetic-3D topological insulator (TI)
heterostructure and MnBi2Te4 has attracted intense interest. However, its detection remains difficult in
experiments. We systematically investigate the disorder-induced phase transition of the axion insulator
state in a 3D TI with antiparallel magnetization alignment surfaces. It is found that there exists a 2D
disorder-induced phase transition on the surfaces of the 3D TI which shares the same universality class with
the quantum Hall plateau to plateau transition. Then, we provide a phenomenological theory which maps
the random mass Dirac Hamiltonian of the axion insulator state into the Chalker-Coddington network
model. Therefore, we propose probing the axion insulator state by investigating the universal signature
of such a phase transition in the ferromagnetic-3D TI heterostructure and MnBi2Te4. Our findings not
only show a global phase diagram of the axion insulator state, but also stimulate further experiments to
probe it.
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Introduction.—Topology and symmetry breaking play a
key role in describing phases of matter. Since proposed in
2008, the axion insulator state has attracted extensive
experimental and theoretical studies [1–8]. The 3D topo-
logical insulator (TI) is a time-reversal symmetry-protected
topological matter characterized by gapless Dirac surface
states in the bulk gap [1]. If the time-reversal symmetry is
broken, an axion insulator state shows up when the gapless
Dirac surface states are gapped out by the magnetizations
pointing outward from (inward to) the surfaces [1,2]. In
comparison with a trivial insulator state, the axion insulator
state possesses a unique electromagnetic response from the
massive Dirac surface states, giving rise to novel pheno-
mena such as a quantized topological magnetoelectric
effect and half-quantized surface Hall conductance [2–5].
In the experiment, the axion insulator shows huge longi-
tudinal resistance and zero Hall conductance, because the
top and bottom surface Hall conductance cancels out [7–9].
These results, however, coincide with a trivial band
insulator. Therefore, definitive experimental evidence for
the axion insulator state is still missing.
On the other hand, typical properties of Anderson phase

transitions in disordered systems, especially the critical
exponents, depend only on general properties of the model,
such as spatial dimensionality, symmetry, etc. The experi-
mental studies of the quantum phase transition have already
been extensively performed in magnetic TIs and revealed
unique properties of topological states [9–16]. In this work,

we propose probing the axion insulator state by shedding
light on the disorder-induced metal-insulator transition in
3D magnetic TIs. We systematically study the disorder
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FIG. 1. (a) Schematic plot of an axion insulator consisting of a
3D time-reversal invariant TI with antiparallel magnetization
alignment surfaces. (b) The magnetization term can open a gap Δ
at the Dirac point of the surface states. (c) Schematic phase
diagram of the 3D TI with antiparallel magnetization alignment
surfaces under weak disorder. The red curve depicts the Hall
conductance varying with the Fermi energy. Given the difficulty
in detecting the quantized surface Hall conductance, the phase
transition between the axion insulator and the Anderson insulator
is proposed as a universal experimental signature of an axion
insulator.
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effect of a 3D TI with antiparallel magnetization alignment
surfaces and give a global phase diagram. Notably, there
exists a 2D quantum-Hall-type phase transition between the
axion insulating phase and the Anderson insulating phase,
which provides a universal experimental signature of an
axion insulator state [see Fig. 1(c)]. Specifically, with the
weak disorder and increase in the Fermi energy, the axion
insulator will undergo a 2D delocalized transition on the
surfaces of the 3D TI, become an Anderson insulator, and
then transform into a diffusive metal after a 3D insulator-
metal transition. We also provide a phenomenological
theory that relates the disordered axion insulator to the
Chalker-Coddington network model. Furthermore, the
2D phase transition remains in the presence of bulk
antiferromagnetism for MnBi2Te4, and thereby, it is model
independent. The universal phase transition behavior of the
axion insulator we predicted can be detected in the
ferromagnetic-3D TI heterostructure and the antiferromag-
netic TI MnBi2Te4 [9,15–22].
Effective model of the axion insulators.—We consider a

3D TI with antiparallel magnetization alignment surfaces
[see Fig. 1(a)] that has been realized in experiments [6,7,9],
and the four-band effective Hamiltonian is

H ¼ H0 þHM; ð1Þ

where H0ðkÞ ¼
P

4
i¼1 diðkÞΓi with d1 ¼ A1kx, d2 ¼ A1ky,

d3 ¼ A2kz, and d4 ¼ M0 − B1k2z − B2ðk2x þ k2yÞ. It
describes a time-reversal invariant TI and hosts a single
Dirac cone on each surface [1]. Here, Ai and Bi are model
parameters, and M0 controls the bulk gap of the 3D TI.
Γi ¼ si ⊗ σ1 for i ¼ 1, 2, 3, and Γ4 ¼ s0 ⊗ σ3. si and σi
are the Pauli matrices for the spin and orbital degrees of
freedom. The Zeeman splitting HM ¼ MðzÞsz ⊗ σ0 where
MðzÞ takes the values�Mz on the top and bottom surfaces,
respectively, and zero elsewhere [see Fig. 1(a)]. Such a
time-reversal breaking mass term will open up a Dirac gap
Δ ≈ 2jMzj on the top or bottom surface [see Fig. 1(b)],
which is described by Ht=p

surf ¼ A1ðσxkx þ σxkxÞ �Mzσz
and leads to a half-quantized Hall conductance σt=bxy ¼
�ðe2=2hÞ for the top or bottom surface [2]. Note that we
have demonstrated the existence of an axion insulating
phase by numerically calculating half-quantized surface
Hall conductance and discretizing Hamiltonian H on
square lattices [23].
Unlike the quantum anomalous Hall insulator, the total

Hall conductance of the axion insulator is zero, i.e.,
σtxy þ σbxy ¼ 0, and there are no chiral edge modes within
the surface gap. This explains why a zero Hall conductance
plateau and a huge longitudinal resistance were observed for
the axion insulator state in the recent experiments [7–9].
However, these results are coincident with a trivial band
insulator. To unveil signatures of the axion insulator, we will
investigate the disorder-induced critical behavior of the
axion insulator in the following. We include the random

magnetic disorder as HD ¼ VðrÞsz ⊗ σ0 where VðrÞ is
uniformly distributed within ½−W=2;W=2� withW denoting
the disorder strength.
Quantum-Hall-type phase transition.—To calculate the

localization length, we consider a 3D long bar sample of
length Ly and widths Lx ¼ Lz ¼ L with the periodic
boundary condition in the x direction and open boundary
conditions in the y and z directions unless otherwise
specified. The localization length λðLÞ is obtained by
transfer matrix method [24–26]. Generally, criticality can
be accessed from the renormalized localization length
Λ ¼ λ=L, which increases with L in a metallic phase,
decreases with L in an insulating phase, and does not
depend on L at the critical point.
We consider a sample like Fig. 1(a) and perform a

finite-size scaling analysis as shown in Fig. 2. It shows
that the axion insulator undergoes multiple phase tran-
sitions with increasing Fermi energy EF under
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FIG. 2. (a)–(d) Renormalized localization length Λ ¼ λðLÞ=L
against the Fermi energy EF at different magnetic disorder
strengths W. The curves correspond to different sample widths
L. (e) Shows a fit of the numerical data in the inset withW ¼ 1.5
by a scaling function Λ ¼ fðL1=νjEF − Ecj=MzÞ. The polyno-
mial fitting method gives a critical exponent ν ¼ 2.654� 0.213
and a critical Fermi energy Ec ¼ 0.164� 0.005. Here, the raw
data is obtained from the grey rectangle region of (a). (f) Λ with
periodic boundary conditions in the x and z directions and
W ¼ 1.5. Other parameters are fixed as A1 ¼ A2 ¼ 0.55,
B1 ¼ B2 ¼ 0.25, M0 ¼ 0.3, and Mz ¼ 0.12.
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different disorder strengths W. Specifically, for weak
disorder W ¼ 1.5 and 2 in Figs. 2(a) and 2(b), one can
identify an axion insulator phase with dΛ=dL < 0 when
jEF=Mzj≲ 1, where the Fermi energy EF is within the
surface Dirac gap Mz. With increasing Fermi energy, the
system goes delocalized with dΛ=dL ¼ 0 and arrives at an
Anderson insulator phase without half-quantized Hall
conductance as we will show below. This is reminiscent
of the plateau-plateau transition in the 2D quantum Hall
system. To identify that such a phase transition belongs to
the quantum Hall type, we perform a single-parameter
scaling analysis in Fig. 2(e) [27]. The critical exponent ν
which is expected to exhibit universality is extracted as
2.654� 0.213. This estimate of ν is in agreement with
recent numerical results, ν ∼ 2.6, based on the Chalker-
Coddington model of the integer quantum Hall effect
[28–30]. Note that, as long as the magnetic disorder
dominates over the Anderson disorder, the existence of
the 2D quantum-Hall-type transition remains [23].
Moreover, to verify that the phase transition comes from
two-dimensional Dirac surfaces, we take periodic boun-
dary conditions in both x and z directions and calculate Λ
in Fig. 2(f). In comparison to Fig. 2(a), one can see the
lower 2D delocalized state disappears, and only the higher
critical point remains, which indicates a 3D Anderson
metal-insulator transition. As a result, there exists a
universal 2D quantum-Hall-type phase transition on the
surfaces of the axion insulator which, thus, provides a
universal signature of the axion insulator state in experi-
ment [23]. Here, the localization length exponent
ν ¼ p=2κ is determined directly from the measured κ
and p, and they can be directly obtained from the transport
measurement experimentally [31]. Finally, in the large
disorder limit, the axion insulator is gradually suppressed
by the 3D critical point, and eventually disappears [see
Figs. 2(a)–2(d)], and the system becomes a 3D diffusive
metal. This can be seen more easily in the phase diagram
[see Fig. 3(d)].
Hall conductance and phase diagram.—Next, we inves-

tigate the Hall conductance to further identify the two
insulating phases illustrated above. For a low Fermi energy
and if the system is in an axion insulating state, the surface
Hall conductance and the net Hall conductance of the
whole sample are expected to be half-quantized and zero,
respectively. On the other hand, when the Fermi energy
goes across the 2D delocalized state, the system is con-
verted into an Anderson insulator and the surface Hall
conductance is expected to lose its half-integer quantization
and approach zero. Note that, in realistic materials such as
ferromagnetic-TI heterostructures and antiferromagnetic TI
MnBi2Te4, the magnetizations are pointing in the z
direction, and thereby, the phase transition occurs only
on the top and bottom surface.
Here, the layer-dependent Hall conductance is evaluated

by a real-space Kubo formula [32,33],

σxyðzÞ ¼
2πie2

h
hTrfP½−i½x̂; P�;−i½ŷ; P��gziW; ð2Þ

with periodic boundary conditions in both x and y
directions. h…iW represents the disorder average,
ðx̂; ŷÞ denotes the position operator, and Trf…gz is trace
over the wave functions of the zth layer. P is the projector
onto the occupied states of H. Through Eq. (2), we
calculate the layer-dependent Hall conductance σxyðzÞ
[see Fig. 3(a)]. For both a clean sample (W ¼ 0) and a
disordered sample (W ¼ 1.5), the nonzero Hall conduct-
ance mainly comes from surfaces near the top (z ¼ 1)
and bottom (z ¼ 8) layers, while it decays exponentially
into bulk (between z ¼ 2 and z ¼ 7). This is coincident
with the exponential decay of the surface states in 3D TI,
where the surface states exist in several layers near the
surfaces [34]. To gain further insight into the Hall

(a) (b)
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FIG. 3. (a) The Hall conductance as a function of the layer
index z with z ¼ 1 for the bottom layer and z ¼ 8 for the top
layer. (b) The cumulative summation of the Hall conductance
from z ¼ 1 to the zth layer is disorder averaged. (c) The Hall
conductance of the top surface states [

P
n¼8
n¼7 σxyðnÞ], the

bottom surface states [
P

n¼2
n¼1 σxyðnÞ] and the whole sample

[
P

n¼8
n¼1 σxyðnÞ]. (d) Phase diagram of a disordered axion insulator

(AI) in the EF=Mz −W plane. (e) Chiral edge states along
domain walls of Dirac fermions with positive (þ) and negative
(−) masses. (f) The Chalker-Coddington network model on a
quasi-1D system, where a scattering matrix describes the scatter-
ing from two incoming to two outgoing modes at each node
(crossing point).
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conductance, we take the total Hall conductance of the
several layers into consideration. The cumulative sum-
mation of the contribution from each layer, i.e.,Pn¼z

n¼1 σxyðnÞ, is shown in Fig. 3(b). For W ¼ 1.5
(W ¼ 0), the cumulative Hall conductance becomes
half-quantized at z ¼ 1 (z ¼ 2) indicating that the bottom
surface Hall conductance is half-quantized. Besides,
when z ¼ 8, the net Hall conductance of the whole
sample vanishes for both cases since the half-quantized
Hall conductance of the top and bottom surfaces cancel
each other out. Moreover, in Fig. 3(c), one can see a half-
quantized surface Hall conductance plateau for the axion
insulator at the lower energy regime (jEF=Mzj≲ 0.5),
while it gradually approaches zero for the Anderson
insulator at the high energy regime.
Now, we perform finite-size scaling analysis under

various disorder strengths and summarize a phase diagram
in the EF=Mz −W plane [see Fig. 3(d)]. Because of the
particle-hole symmetry of the Hamiltonian H, the phase
diagram is symmetric about EF=Mz ¼ 0. For weak W, the
axion insulator and the 3D diffusive metal phases are
separated by the Anderson insulator phase. With the
increase of the disorder strength, they gradually draw close
to each other and are connected, eventually, at a large
disorder strength W ≈ 2.5. Then, the bulk gap continues to
shrink and close at about W ≈ 3.2, and the sample ends up
as a 3D metal [35], which manifests the features of
levitation and pair annihilation [36].
To understand the underlying mechanism for the above

2D phase transition, we provide a phenomenological explan-
ation. When W ¼ 0, the surface state satisfies a 2D Dirac
Hamiltonian with a spatially homogenous mass. With the
increase of the random magnetic (mass) disorder W, the
surface mass becomes spatially inhomogeneous such that
the Dirac fermions with positive and negative masses coexist.
In this case, the system can be described by a 2D random
Dirac mass Hamiltonian as long as the Fermi energy is much
smaller than the 3D mobility edge where the bulk states can
be safely ignored. In Fig. 3(e), a chiral edge state exists
between two regions with Dirac masses of opposite signs
[37]. Moreover, the 2D random Dirac mass Hamiltonian can
be mapped onto the Chalker-Coddington model which
describes the quantum Hall plateau to plateau transition
[37–39]. Figure 3(f) shows the Chalker-Coddington network
model on a quasi-1D system. At each node, the incoming and
outgoing channels denote the chiral edge modes confined at
domain walls between Dirac fermions of opposite signs in
Fig. 3(e). Thus, the Chalker-Coddington model is equivalent
to the random Dirac Hamiltonian [37–39]. Moreover, the
critical exponent ν ¼ 2.654� 0.213 in our model agrees
with previous numerical results ν ∼ 2.6, based on the
Chalker-Coddington model [28–30]. Consequently, the
phase transition from the axion insulator to the Anderson
insulator shares the same universality class with the quantum
Hall transition.

Discussions and experimental routines.—Recently, the
axion insulator state was reported experimentally in the
ferromagnetic-3D TI heterostructure and the antiferromag-
netic TI MnBi2Te4 [7–9,14]. They found a phase transition
from an axion insulator state to a Chern insulator state as
the Hall conductance increased from zero to e2=h, when the
magnetizations of the top and bottom surfaces were driven
from an antiparallel alignment to a parallel alignment by
sweeping an external magnetic field [9,14]. However, these
results coincide with the trivial band insulator in magnetic
TI systems [11,12]. In Fig. 4(a), if we start with the axion
insulator phase for antiparallel alignment configuration
(MzMb < 0), both the two-terminal conductance [40–42]
and the Hall conductance increase from zero to e2=h by the
magnetic flipping of the bottom surface. This demonstrates
the axion insulator to Chern insulator transition as observed
in experiments. On the contrary, for the Anderson insulator,
the two-terminal conductance keeps small and the Hall
conductance does not show any quantized behavior [see
Fig. 4(b)]. Thus, we conclude that these reported exper-
imental systems are probably in the axion insulating phase
but cannot be in the Anderson insulating phase. They are
good candidate materials to further identify the axion
insulator by probing the universal 2D phase transition,
thereby ruling out the trivial band insulator.
Regarding the difficulty in varying the Fermi energy in

a 3D sample, we suggest applying an in-plane magnetic
field in the x (y) direction. It will increase EF=Mz by
reducing the out-of-plane magnetization Mz, and the 2D
phase transition can appear [43]. Moreover, we further
include the bulk antiferromagnetism of the Hamiltonian
H in Eq. (1) as an effective model of MnBi2Te4
[21,44,45] and repeat the finite-size scaling [23]. The 2D
phase transition remains and, thereby, is model independent
[23]. Therefore, we propose probing the universal 2D phase
transition of the axion insulator in a ferromagnetic-3D TI
heterostructure or an antiferromagnetic TI MnBi2Te4.
Conclusion.—To summarize, we investigate the disorder-

induced Anderson transition of an axion insulator and find a
2D phase transition between the axion insulating phase and

(a) (b)

FIG. 4. Disorder-averaged conductance hGi and total Hall
conductance σxy as functions of the magnetization in the bottom
surface Mb. (a) The axion insulating phase with EF=Mz ≈ 0.083.
(b) The Anderson insulating phase with EF=Mz ¼ 2. Other
parameters: the disorder strength W ¼ 1.5 and the system size
Lz × Lx × Ly ¼ 8 × 40 × 400.
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the Anderson insulating phase, which does not occur in
trivial band insulators. The 2D phase transition originates
from the 2D massive Dirac Hamiltonian which lives on the
surfaces of a 3D system. From the viewpoint of the Chalker-
Coddington network model, an exponent ν ≈ 2.65 strongly
suggests the 2D phase transition shares the same universality
class with the quantum Hall plateau to plateau transition.
Therefore, we propose probing the axion insulator state by
investigating the universal signature of 2D quantum-Hall-
type critical behaviors in 3D magnetic TIs.
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Note added.—Recently, we became aware of an indepen-
dent study [46] which focuses on similar topics but
different aspects.
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