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Understanding the structure and properties of refractory oxides is critical for high temperature
applications. In this work, a combined experimental and simulation approach uses an automated closed
loop via an active learner, which is initialized by x-ray and neutron diffraction measurements, and
sequentially improves a machine-learning model until the experimentally predetermined phase space is
covered. A multiphase potential is generated for a canonical example of the archetypal refractory oxide,
HfO2, by drawing a minimum number of training configurations from room temperature to the liquid state
at ∼2900 °C. The method significantly reduces model development time and human effort.
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Refractory oxides are essential components in the
development of high temperature ceramic materials [1],
thermal barrier coatings [2], and nuclear applications [3,4].
Their high melting temperatures, Tm > 1500 °C, make
refractories suitable for applications in harsh environments,
in addition to their insulating properties and ability to
prevent oxidation. It is therefore important to identify phase
transformations and structural rearrangements close to the
melting point. Diffraction plays an important role in the
computing of phase diagrams and thermochemistry using
the CALPHAD method, which has been the foundation for
providing a consistent picture of the stable structures and
thermodynamic properties of materials through the calcu-
lation of the Gibbs free energy. X-ray powder diffraction in
particular is a workhorse for materials characterization,
providing data on crystallographic phases, thermal expan-
sion, and volume changes associated with phase transitions
in different atmospheres. Neutron powder diffraction also

provides valuable structural information, especially on
lighter elements such as oxygen, but generally requires
larger samples and longer count times. However, there are
few suitable containers for x-ray and neutron diffraction
experiments at temperatures >2000 °C. In the last decade,
advances in aerodynamic levitation and laser heating
techniques combined with high-energy x-ray and neutron
diffraction have pushed crystallographic measurements
above 1500 °C [5,6] providing accurate structural data over
a wide range of phase space.
On the computational modeling front, ab initio molecular

dynamics simulations (AIMD) provide atomic scale reso-
lution with quantum mechanical accuracy, but are restricted
to short simulation times, and small system sizes. Empirical
interatomic potentials based on fixed analytical functional
forms are derived from physical or chemical intuitions and
parametrized to experimental properties or from ab initio
calculations, but lack the sophistication to capture the
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many-body interactions required to arrive at ab initio accu-
racies. In recent years, advances in combining quantum-
mechanical calculations with machine learning has resulted
in a new class of interatomic potentials that learns the
potential energy surface landscape directly from reference
ab initio datasets [7–11]. Machine learning interatomic
potentials (ML-IP) can maintain near ab initio accuracy
while affording atomic resolution at larger system sizes
(through linear scaling) and time scales comparable to
classical interatomic potentials [12,13]. In particular, ML-IP
based on the Gaussian approximation potential (GAP) [14]
have been successfully applied to model liquids [15,16],
crystals [17], defects [16], amorphous [18], multicomponent
materials [19], and molecules [20]. Training ML-IP requires
efficiently drawing configurations from a wide chemical
space of interest and finding the best hyperparameters.
Active learning is a subdomain of machine learning where
an unsupervised machine learning arrives at an optimal
supervised machine learning model (i.e., ML-IP) with a
minimum number of training configurations [21]. Smith
et al. proposed a “query by committee” strategy, which is an
active learning strategy that exploits disagreement in ensem-
ble of ML-IP model by sampling regions of chemical space
where the ML-IP fails to predict the potential energy
accurately [22]. Podryabinkin et al. used an active learning
strategy based on a “D-optimality” criterion for selecting
atomic configurations [23]. Zhang et al. employed a deep
potential generator to efficiently sample configuration space,
and generate an accurate reference dataset from the con-
figuration with low prediction accuracy, and perform iter-
ative training [24]. Active learning strategies based on
Bayesian inference have also been reported [19,25,26].
We recently reported an active learner that relied on
exploiting the cluster structure embedded in a given unla-
beled atomic configuration so as to arrive at a minimum
number of training configurations [15,27]. Here we propose
to bring together the advances in experiments at extreme
conditions and theoretical modeling through a closed loop
active learning scheme as shown in Fig. 1. Our scheme
consists of three components: (1) Experimental measure-
ments are performed up to the melting temperature on a
refractory oxide sample. Model structures are fitted to the
neutron and x-ray diffraction measurements of each of the
phases at different reference temperatures. In situ high
energy x-ray diffraction is used to obtain unit cell volume
as a function of temperature. (2) An active learning scheme
initialized by the model structures drives the phase space
exploration over the experimental measurement region.
(3) A ML-IP is generated that can be iteratively improved
by the active learning scheme. To illustrate this approach, we
consider an archetypal refractory oxide, hafnium dioxide,
HfO2 (which is isostructural with the most studied ceramic
ZrO2). Upon heating, HfO2 undergoes transformations from
monoclinic (m-HfO2) to tetragonal (t-HfO2) to cubic
(c-HfO2) phases before melting at ∼2800 °C [28,29].

The experiment driven workflow is shown in Fig. 1.
X-ray diffraction data were collected at beam line
6-ID-D at the Advanced Photon Source, Argonne
National Laboratory on an amorphous silicon area detector
(PE-XRD1621) using 60.07 keV (λ ¼ 0.2064 Å) x rays.
High purity samples (Aldrich, 99.995% trace metal purity)
of ∼2 mm diam were levitated and heated up to ∼3000 °C
in reducing (argon) and oxidizing (oxygen) atmospheres
[29]. Calibration of the detector distance, beam center,
detector tilt, and rotation were performed using the FIT2D

software package based on the measurement of a CeO2

NIST standard [30]. Reduction of the 2D images to 1D
diffraction patterns yielded the x-ray intensities,IXRAYðQÞ.
Lattice parameters were obtained via LeBail whole pattern
fitting of the previously reported monoclinic (P21=c),
tetragonal (P42=nmc), and cubic (Fm-3m) crystal structure
models to the diffraction data [31–33]. The volumes
obtained were normalized to the number of HfO2 formula
units per unit cell to aid in the comparison of the cubic and
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FIG. 1. The experiment driven workflow. (1) Experimental high
energy x-ray and neutron diffraction patterns are measured over a
wide temperature range using a uniaxial laser heating system on
an aerodynamically levitated HfO2 sample. (2) Cluster-based
active learning enables exploration over a wide range of phase
space. (3) Iterative training and fitting methods provide feedback
into (2).
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monoclinic unit cell (Z ¼ 4) volumes to that of the
tetragonal phase (Z ¼ 2). The phase transitions from
monoclinic-tetragonal-cubic liquid in an argon atmosphere
with increasing temperature are shown in Fig. 2. A
deviation of ∼0.2% to lower V is observed in an oxygen
atmosphere for the monoclinic phase for temperatures
>600 °C and the phase transition to tetragonal occurs at
1400–1500 °C depending on redox environment [34].
However, the cubic and tetragonal phase volumes are
essentially the same in both Ar and O2 [34]. Figures 3(a)
and 3(b) shows the x-ray data for the high temperature
crystalline phases and the liquid and amorphous forms. The
latter SXRAYðQÞ experimental data have previously been
reported in Ref. [29] but are shown here to show the extent
to which this multiphase potential has been trained.
Complementary neutron diffraction measurements were

performed on the NOMAD beam line at the Spallation
Neutron Source (Oak Ridge National Laboratory). Data
were acquired for each of the crystalline phases of HfO2,
i.e., monoclinic at T ∼ 1000 °C, tetragonal at ∼1850 °C and
cubic at ∼2900 °C in argon and in a 80%Ar: 20%O2

mixture using a laser-heated aerodynamic levitator [35].
The time-of-flight neutron data were reduced using in-
house software [36] to extract the pair distribution
functions,GNEUTRONðrÞ. Neutron pair distribution functions
for hafnia in the monoclinic, tetragonal, and cubicþ
tetragonal forms. Neutron levitation experiments are con-
siderably more difficult that x rays due to the lower signal
or background ratio and long count times required.

FIG. 2. Unit cell volume of the monoclinic (pentagon), tetrago-
nal (triangles), and cubic (squares) forms of hafnia measured in
an argon atmosphere. Open symbols represent mixed phases and
solid symbols are single phase. The cubic form was only
observed as a mixed phase with the tetragonal polymorph.
The average cell volume estimates from GAP MD simulation
for m-HfO2 and t-HfO2 with an isothermal-isobaric ensemble are
shown as green stars with error bars.

FIG. 3. Diffraction versus simulation data for (a) x-ray dif-
fraction patterns compared to the GAP MD computed x-ray
intensity (λ ¼ 0.123–59 Å) for the two high temperature phases.
(b) Experimental and simulated x-ray structure factors for
amorphous and liquid HfO2. (c) Experimental and simulated
neutron pair distribution functions for the pure phases of HfO2.
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However, neutrons are more sensitive to oxygen correla-
tions than x rays, which are important for understanding
defects and diffusion; i.e., at Q ¼ 0 Å−1 the O-O neutron
partial weighting factor is 36% compared to 3% for x rays,
and the Hf-O partial is 48% (neutrons) compared to 30%
(x rays).
The second section in the workflow illustrated in Fig. 1 is

the experimentally driven phase space exploration: Here we
implement in the closed-loop, active learning, phase space
exploration in two steps. In the initialization step, active
learning starts from the model structures, and generates the
ML-IP model from the ensemble of AIMD structures at the
neutron diffraction reference temperatures. This initial ML-
IP model corresponds to a poor approximation of the
potential energy surface and is used to perform ensemble of
isothermal-isobaric molecular dynamics corresponding to
regions unexplored in the experiment. The active learning
subsamples data from those MD simulation trajectories to
perform ab initio single point calculation and iteratively
retrain the ML-IP model. The advantage here is that
the AIMD is no longer required beyond the initialization;
ML-IP will give access to heating or cooling rates that are
beyond the accessible limit of the AIMD [18]. The active
learning ensures that only a small sample of DFT single
points are required to arrive at the target accuracy. In
practice, the closed loop can be initialized by a few AIMD
or single point DFT configurations. The active learning
exits the closed loop once the required phase space
coverage is achieved. The active learning phase space
exploration region corresponds to heating m-HfO2 from
25 to 1500 °C, cooling t-HfO2 from 1850 to 1400 °C,
heating t-HfO2 from 1850 to 2400 °C and cooling c-HfO2

from 2900 to 2300 °C. A step-by-step explanation of the
closed loop process with an example illustration is provided
in the Supplemental Material D [34].
The active learning process is built on a recently

proposed scheme based on an unsupervised clustering
method coupled to a Bayesian optimization (BO) [15].
The unsupervised clustering method uses the HDBSCAN
algorithm to partition the input trajectory and sequentially
samples sparse configurations for training the ML-IP
[37,38]. The Bayesian optimization performs on-the-fly
hyperparameter optimizations, to find the optimal ML-IP
model by training on the sampled configurations and
validating an independently sampled test dataset [39].
The advantage of this approach is that BO also provides
the optimal hyperparameters on the fly. Previously [15], the
active learning method has been applied to a very large
AIMD “melt-quench” dataset of 33 000 configurations of
liquid and amorphous hafnia. In our previous study [15],
we demonstrated that for a single phase of hafnia the
scheme is able to arrive at a near ab initio accurate training
dataset with only 0.8%, i.e., 260 samples from this large
dataset. For the ML-IP, we use the GAP model along with
the many-body smooth overlap of atomic positions (SOAP)

descriptor [14,40]. The details of the GAP model and the
descriptor are further discussed in the Supplemental
Material, Sec. B [34]. The active learning scheme is further
discussed in the Supplemental Material, Sec. D [34] and the
code implementation with examples usage with GAP
model are available elsewhere [15].
The ab initio calculations were performed using density

functional theory (DFT) as implemented in the VASP

package [41,42]. The Perdew-Burke-Ernzerhof generalized
gradient approximation and projector augmented plane
wave methods were employed [43,44], with a 520 eV
plane wave cutoff and 2 × 2 × 2 K grid. A 1 fs time step
and Nosé-Hoover thermostat were used for the AIMD
[35,36]. For the iterative training of the GAP model, a
system size of 96 atom was employed, except for t-HfO2

where a 108-atom system size was used. An ensemble of
AIMD simulations were performed for 12 ps starting from
the pure phases based on the model structures at the neutron
diffraction reference temperatures. The active learning was
initialized with the last 6000 snapshots from each of the
AIMD trajectories. Using the initial active learned GAP
model, isothermal-isobaric ensemble sampling was per-
formed with the LAMMPS simulation package compiled
with the QUIP pair style support [45–47]. The single point
DFT calculations employ the same DFT parameters as
discussed above. The training dataset generation and
isothermal-isobaric quench simulation setup for amorphous
and liquid HfO2 have been discussed in detail elsewhere
[15]. In this work, the simulation for both the liquid and
amorphous forms have been recalculated with the multi-
phase potential to show the entire phase space.
The training of the ML-IP based on the GAP model was

iteratively mapped by the active learning, until a uniform
coverage was achieved across experimental phase space.
The active-learned multiphase potential provides a model
that spans the entire phase space regions from the liquid to
amorphous and crystalline states of HfO2 with a meager
2053 configurations, the details of which are summarized
in the Supplemental Material, Table C1 [34]. The para-
meters used for training the multiphase potential are
summarized in the Supplemental Material, Table C2
[34]. A nonparametric two-body term was added to the
SOAP descriptor to prevent nonphysical clustering of
atoms at high temperatures [48]. The multiphase potential
was validated on a randomly drawn DFT configuration
(i.e., outside of training dataset) from the entire phase space
region and gave a mean absolute error in energy
of 2.4 meV=atom.
For the GAP MD based production simulation, a

6144-atom simulation cell was used for both m-HfO2

and c-HfO2. For t-HfO2, a 6912-atom system was used.
The trajectories were sampled for 1.1 ns at the reference
neutron diffraction temperatures. The first 100 ps were
omitted and the subsequent 1 ns trajectory was used for the
analysis. The structural arrangements for all the phases of
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HfO2 are shown in Fig. 3. Figure 3(a) shows good agree-
ment between the Hf-dominated experimental x-ray inten-
sities and GAP MD simulations for the two high
temperature crystalline phases [33,49,50]. Similarly,
Fig. 3(c) compares the oxygen sensitive neutron diffraction
patterns for the monoclinic, tetragonal, and cubic forms of
HfO2. The structure factors of the simulated liquid and
amorphous form are shown in Fig. 3(b). Long-range
ordering was found to be diminished considerably with
increasing temperature in both the tetragonal and cubic
forms, and this increased disorder at high temperatures is
captured by the machine learned GAP model. The effect of
both disorder and density is also seen in the SðQÞ’s for the
amorphous and liquid phases. Here strong oscillations in
the lower density amorphous signal at highQ (∼5–15 Å−1)
correspond to the edge or corner sharing ratio but these are
washed out in the liquid signal. The computation of PDF,
structure factor, and x-ray intensities are further discussed
in the Supplemental Material [34], Secs. F and H.
In order to assess the quality of the reported multiphase

potential with twowell-known parametrizations for HfO2, a
comparison of cohesive energy and diffusion coefficients
are presented. Since the focus is on experiments, the
theoretical validation of multiphase potential is restricted
to this comparison. The cohesive energies of m-HfO2,
t-HfO2, and c-HfO2 computed by different methods are
shown in Supplemental Material, Table I1 [34]. The DFT
computed cohesive energies reproduce the correct phase
order of the phases. The GAP predicted cohesive energy
shows the closest agreement with DFT, followed by charge-
optimized many-body potential (COMB) parametrized for
the hafnium–hafnium-oxide system [51]. The well-known
(classical MD) parametrization for HfO2 by Broglia
et al. [52], shows a large deviation with respect to DFT.
To further test the quality of the multiphase potential, 50
random configurations from the m-HfO2 AIMD trajectory
were drawn and the forces are computed using our method,
compared to COMB and Broglia et al. The resulting force
validation plot with respect to DFT is shown in the
Supplemental Material, Fig. E1 [34], and indicates that
the GAP (0.09 eVÅ) gives the lowest root mean square
error in predicted forces with ab initio accuracy, signifi-
cantly outperforming COMB (4.23 eVÅ) and Broglia et al.
(10.85 eVÅ) interatomic potentials.
The diffusion constants were also calculated from our

molecular dynamics simulations via the mean square
displacements of atoms, see Supplemental Material [34],
Sec. J. Our simulation results for m-HfO2 and t-HfO2

structures show negligible diffusion at simulation
temperatures (25, 1850 °C) for both Hf and O.
Furthermore, we find the diffusion constants of c-HfO2

to be DHf ¼ 0.12� 0.002 × 10−6 cm2= sec for Hf and
DO ¼ 1.53� 0.005 × 10−5 cm2= sec for O. Similarly, for
liquid HfO2, the diffusion constants yield DHf ¼3.3796�
0.1×10−5 cm2=sec and DO¼6.2971�0.1×10−5cm2=sec,

respectively. These values are in good agreement with
previous simulation results reported by Hong et al. [53].
Furthermore, c-HfO2 shows negligible diffusion for Hf
compared to O. However, with increasing temperature we
observe a strong diffusion of Hf atoms in liquid HfO2 [15],
comparable to that of O atoms. Our multiphase interatomic
potential also accurately captures the melting point of HfO2

as described in the Supplemental Material [34], Sec. K.
In conclusion, we show the proof of concept for an

automated, experimentally driven scheme for generating a
multiphase ML-IP for a canonical refractory oxide, namely,
HfO2. The approach offers the following distinct advan-
tages: (1) The stable structures for initializing ab initio
calculations can be obtained from convex hull construction
or from evolutionary strategies such as USPEX [56,57].
However, the experimentally synthesized structures are not
necessarily the lowest energy structure [58]. Our approach
bypasses this problem by enabling experimental model
structures to directly enter the ML-IP training process.
(2) The process removes the ambiguity of sampling phase
space required to train the ML-IPs by direct interfacing
with experimental measurements. (3) It provides a direct
validation of the model with experimental measurement.
(4) Active learning ensures that sparse configurations are
required to arrive at an ML-IP within ab initio accuracy.
The results indicate the multiphase potential is able to
reproduce both the structural and dynamical properties of
HfO2 from room temperature to the melt with ab initio
accuracy. The accuracy of the simulated results are only
limited by the choice of the ab initio method used for
generating the training data and can be systematically
improved by choosing more accurate quantum chemistry
techniques. Although for this particular application the
method involved the Gaussian approximation potential
framework for generating the model, the proposed scheme
could be generalized to other ML-IP methods. Finally, the
automation scheme offers a systematic pathway for inves-
tigation of other refractory oxides and similar classes of
materials.
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