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Ultracold atomic Fermi gases can be tuned to interact strongly, which produces a display of
spectroscopic signatures above the superfluid transition reminiscent of the pseudogap in cuprates.
However, the extent of the analogy can be questioned since many thermodynamic quantities in the
low temperature spin-imbalanced normal state can be described successfully using Fermi liquid theory.
Here we present spin susceptibility measurements across the interaction strength-temperature phase
diagram using a novel radio frequency technique with ultracold 6Li gases. For all significant interaction
strengths and at all temperatures we find the spin susceptibility is reduced compared to the equivalent value
for a noninteracting Fermi gas. At unitarity, we can use the local density approximation to extract the
integrated spin susceptibility for the uniform gas as a function of temperature, which at high temperatures is
generally less than theoretically predicted. At low temperatures, our data lie within the range of theoretical
predictions, although we can also describe the entire curve using a very simple one-parameter mean field
model with monotonically increasing spin susceptibility.
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In the study of strongly interacting quantum systems,
the Bose-Einstein condensation–Bardeen-Cooper-Schrieffer
(BEC-BCS) crossover is a simple and experimentally
realizable model [1–3] with implications for a variety of
physical systems such as the high-Tc cuprates [4] and
neutron matter [5,6]. In this model, a two-component
Fermi gas has an attractive contact interaction of varying
strength. When the interaction is weak, the BCS state forms,
while for strong interactions the fermions form composite
(bosonic) molecules, which then condense into a BEC.
The crossover occurs as these two states connect to one
another by tuning the interaction strength, parameterized by
ðkFaÞ−1, where kF is the Fermi wave vector and a is the
s-wave scattering length. A fundamental question that
emerges from this model is the degree to which it embodies
something universal about strongly interacting fermions, that
is, which strongly interacting fermionic systems can be
approximately mapped to an effective theory falling some-
where along the crossover. In particular, for the cuprates, the
phenomenon of the depressed density of states above the
transition temperature known as the pseudogap [7,8] has
been suggested to be due to a “preformed pairs” state
analogous to the BEC-BCS crossover [4]. Although one
does not expect the complete, complex phenomenology of
cuprates in the BEC-BCS crossover, it remains an open
question whether the cuprate pseudogap derives fundamen-
tally from a strongly interacting pairing mechanism. If so,
one would expect an analog pseudogap in ultracold gases.
In light of these possible similarities, an important

project is to compare the measured properties between
ultracold gases at the BEC-BCS crossover to their equiv-
alent in materials. For spectroscopic properties, one can

compare the angle-resolved photoemission spectro-
scopy measurements of the cuprates [7,9–11] to their
ultracold gas analogs [12–14]. However, one expects the
spectroscopic measurements to be strongly influenced by
the nature of the particles’ dispersion curve, which is
parabolic for ultracold gases but significantly not so in
materials [15], which in addition can have surface effects.
In cold gases, spectroscopy from uniform samples [16] has
also shown evidence of non-Fermi-liquid behavior. Bulk
thermodynamic measurements [17–19] are an alternative,
as they can be deduced from the equation of state (EoS) of a
trapped atomic gas [20–25]. An appealing property for
comparisons is the spin susceptibility. This property is
easily calculated for the noninteracting Fermi gas, which
provides a natural scale and is directly measurable in
materials—for example, using the NMR Knight shift
[26,27]. In NMR measurements of cuprates, a clear
decrease of the spin susceptibility is observed below the
pseudogap onset temperature T�. Although a reduction of
spin susceptibility can be caused by many factors, in the
cuprates it is associated with a reduction in the density of
states at the Fermi energy, which has been confirmed to
exist based on many other measurements [7].
In ultracold Fermi gases, the situation is less clear: some

theoretical calculations of the spin susceptibility have
predicted a weak temperature dependence (except possibly
close to the transition temperature) and a generally mean
field form [28–32], while others have found significant
temperature dependence over a large temperature range
closer to that seen in cuprates [33]. In experiments with
Fermi gases, the spin susceptibility has been determined
from the EoS [34] from out-of-equilibrium dynamics [19,35]
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and measured using speckle-field imaging [36]. These
studies found that the spin susceptibility near the onset of
superfluidity is significantly reduced from the expected
value for a noninteracting gas but did not establish the
temperature dependence. Therefore, such reductions are
consistent with any combination of a temperature-indepen-
dent mean field reduction due to interactions and a more
exotic situation involving a reduction in the susceptibility
below a specific T�. The latter scenario would be predicted
by any model with a strong spin-singlet gap reducing the
density of states with decreasing temperature. Here we
present the first comprehensive study of spin susceptibility
over the entire interaction strength-temperature phase dia-
gram, showing that for interaction strengths near unitarity the
spin susceptibility is suppressed significantly even at
elevated temperatures. This indicates that any reduction in
susceptibility, starting from our measured value at high
temperatures, would necessarily lead to a very small residual
susceptibility at the superfluid onset with respect to that of a
noninteracting Fermi gas at the same temperature.
We developed a novel method to measure the spin

susceptibility by radio frequency (rf) dressing. With a
resonant rf driving between two hyperfine states, in the
interaction picture, a chemical potential difference Δμ ¼
μþ − μ− ¼ ℏΩ between the two dressed states is created,
whereΩ=ð2πÞ is the Rabi frequency. This can be thought of
as an effective Zeeman field, and we can extract the
susceptibility from the dressed states’ number difference
after equilibrium is reached. Labeling the hyperfine ground
states of 6Li with j1i from the bottom, we use a mixture of
states j2i and j3i, which are adiabatically connected to the
jmJ;mIi ¼ j−1=2; 0i and j−1=2;−1i states in the high
field limit or jF;mFi ¼ j1=2;−1=2i and j3=2;−3=2i in the
low field limit, respectively. We begin by preparing this
mixture using standard ultracold atom methods, yielding
a Fermi gas with 2 × 104 to 1 × 105 atoms in each
pin state at temperatures ranging from several times
Tt
F down to 0.15 · Tt

F [37], where Tt
F ¼ Et

F=kB ¼
ℏðωxωyωzÞ1=3ð3NÞ1=3=kB is the trap Fermi temperature
and ωi=ð2πÞ; ði ¼ x; y; zÞ are the trap frequencies. In our
experiments, the trap Fermi energy Et

F ranges from 12 to
55h · kHz. The initial mixture is spin imbalanced with a
typical majority:minority ratio of 2∶1, and the gas is held in
a single-beam optical trap, with confinement along the
beam axis provided by the magnetic field. Typical trapping
frequencies are 2π × 30 Hz along the beam axis and
2π × 1–2 kHz in the perpendicular directions. We then
expose the gas to rf radiation on the j2i ⇔ j3i transition.
The radiation is initially 2π × 100 kHz detuned and then
adiabatically ramped onto resonance in 47 ms, mapping the
spin imbalance from the initial basis of j2i and j3i states
into an imbalance in the rf-dressed basis, which we denote
by jþi and j−i. In the rotating wave approximation, these
states have energies of þℏΩ=2 and −ℏΩ=2, respectively.
In our experiment, Ω ¼ 2π × 1.4 kHz, which is small

compared to other energy scales and gives a linear response
[37]. Once the rf radiation is on resonance, we allow the
sample to reach equilibrium for a holding time of typically
2 s. The gas is held in a magnetic field gradient, which
provides a large scalar force together with a small
spin-dependent force. The spin-dependent force is small
(of the order nK=μm) because the magnetic moment of the
two states is very nearly equal. However, the spin-
dependent potential gradient associated with this force is
sufficient to allow the dressed state populations to exchange
and reach thermodynamic equilibrium [37]. Following the
hold period, we adiabatically ramp the radiation to a
2π × 100 kHz detuning, which maps the imbalance back
into the j2i − j3i basis, where we image the sample in situ
using phase-contrast imaging.
We choose the sign of the initial and final detuning in a

specific way to avoid possible bias from slight imaging
frequency offsets and/or residual initial spin imbalance. We
perform the experiment with all four possible signs of
initial and final detuning, using otherwise identical proce-
dures. To simplify the description, we use “R” and “B” to
denote initial or final detuning, which is negative (red) or
positive (blue). Thus, a “BB” experiment consists of
ramping the rf frequency from above resonance onto the
resonance, holding for 2 s, and ramping again to a higher
frequency. Phase-contrast images of the differential spin
density from a typical experimental run after applying our
enhanced principle component algorithm [41] are shown in
Figs. 1(a)–1(d), with a positive signal corresponding to an

(a) (b) (c) (d) (e)

FIG. 1. Four closely related experiments with the same atomic
cloud preparation but different rf procedures. (a)–(d) The first
(second) subscript character on Δn denotes the direction of an
adiabatic sweep onto (away from) resonance, where B (R)
represents blue (red) detuning. We hold the rf for 2 s on resonance
between the sweeps. The rf procedure generates a spin difference
leading to positive signal in (b) and (c) and negative signal in (a)
and (d). (e) 1D profile along the z axis of the trap from summing
the net differential signal ð−ΔnBB þ ΔnRR þ ΔnBR − ΔnRBÞ=4
over the x direction with a 29 μm wide region centered on the
atomic cloud. The data comes from a unitary gas at 210 nK
(T=Tt

F ¼ 0.27).
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excess density of state j2i. The quantities −ΔnBB þ ΔnRR
and ΔnBR − ΔnRB are insensitive to any hypothetical initial
imbalances that persist through the experiment, since
BB=RR and BR=RB are mirrored pairs from the perspec-
tive of Landau-Zener sweeps, which respectively leave the
spin population unchanged and invert the imbalance, in the
limit of no relaxation. Similarly −ΔnBB þ ΔnBR and
ΔnRR − ΔnRB are insensitive to imaging offset because
the dressed spin imbalance prior to the final ramp is
mapped onto opposite final states. Hence the quantity
Δn ¼ ð−ΔnBB þ ΔnRR þ ΔnBR − ΔnRBÞ=4 corrects for
both possibilities. Figure 1(e) shows the row-summed
differential signal generated by our rf method. These data
will form the basis for our analysis. It is worth noting that
our method for generating the imbalance is distinct from
our imaging method [37] and that therefore any method of
spin-selective imaging could be employed, such as a
quantum gas microscope, magneto-optical trap recapture,
or resonant ionization detection.
By calibrating with the total atom number in each spin

state, we can determine the long axis differential axial
density profile Δn1DðzÞ. We define an orthogonal coor-
dinate system where ẑ runs along the trapping beam axis, ŷ
is in the direction opposing gravity and colinear with the
magnetic field and the magnetic gradient, and x̂ is the
remaining direction. The axial density therefore represents
the density integrated over x and y. We present this for a
weakly interacting gas and a unitary gas in Fig. 2 in the
scaled form Δn1DðzÞ · RF=N, where N is the total atomic

number and RF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Et
F=½mðωxωyωzÞ2=3�

q

is the Thomas-

Fermi radius. For comparison to theoretical models, we
acquire the long axis total axial density profile n1DðzÞ and
use this information together with the local density
approximation and a published EoS measurement at

unitarity [39] to determine the three-dimensional density
profile and temperature in our trap. Away from unitarity, we
use a phenomenological fit based on a polylogarithm,
which yields similar results [37]. From the density profile,
we can compute the expected spin difference from a
susceptibility model and integrate to generate the expected
spin difference. We do this for two models, the ideal Fermi
gas model, which describes the weakly interacting data well
but not the unitary data, and the mean field model
described below.
We model the spin susceptibility of the system, which is

given by

χ−1 ¼ ∂H=∂M ¼ ð∂2F=∂M2ÞT;V;N; ð1Þ

where F is the Helmholtz free energy of the system,
H ¼ μ↑ − μ↓ is the analog of the magnetic field, and
M ¼ N↑ − N↓ is the magnetization. In a mean field picture,
the interaction simply adds a temperature-independent term
FI ¼ αM2=ð2χ0NIÞ to the free energy, where χ0NI is the
noninteracting susceptibility at zero temperature (in Fermi-
liquid theory α is proportional to the parameter Fa

0). A more
complete Fermi-liquid theory would also add an effective
mass, but the effective mass correction is small for strongly
interacting Fermi gases [34]. This then results in a
susceptibility χ−1ðTÞ ¼ χ−1NI ðTÞ þ αχ0NI

−1, where χNIðTÞ
is the noninteracting spin susceptibility at temperature T.
At unitarity, where the entire trap has the same inter-

action parameter, we can scale the data into a dimensionless
form that is independent of trapping conditions and use the
local density approximation to express our measurement
purely in terms of the local properties of a uniform gas. In
particular, we consider the dimensionless integrated sus-
ceptibility given by

χ̄ ¼
Z

μ

−∞
χðμ0Þλ3dBdμ0; ð2Þ

where λdB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πℏ2=ðmkBTÞ
p

is the thermal de Broglie
wavelength. This is shown in Fig. 3. For lower temper-
ature samples, at the center of the trap the data shows a
plateau (blue points in Fig. 3). This is expected for a
superfluid for which the spin susceptibility has vanished.
Indeed, the onset occurs where the local T=TF ¼ 0.19,
below a theoretical estimate [42] but slightly above other
experiments [43,44]. The onset is determined by perform-
ing a best fit between our data and the mean field model.
When the sample is partially superfluid, there are signifi-
cant parasitic effects that tend to balance the spins as the
sample evaporates, meaning that the absolute calibration
of susceptibility is no longer possible and the calibration
has to be done based on overlap with totally nonsuperfluid
samples [37]. Taking all the unitary data together, over a
large range of temperatures down to the superfluid
transition, we see a significant reduction compared to

(a)

(b)

FIG. 2. Differential column density measured at (a) 40.0 mT
where interaction is close to zero at 513 nK (T=Tt

F ¼ 0.63) and
(b) 81.4 mT near the unitary point at 210 nK (T=Tt

F ¼ 0.27). The
red dashed lines in (a) and (b) show the noninteracting suscep-
tibility for a gas with the same density profile. In (b), the black
solid line is from our mean field model.
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the noninteracting expectation. However, we are able to
describe this reduction over the whole temperature range
using the mean field model. For comparison, we have
included integrated susceptibilities extracted from several
published results for the spin susceptibility. The measured
value is closest to the Fermi liquid calculation, and it is
less than the predictions with the exception of Ref. [33],
which is smaller than the measurement at the lowest
temperatures. Our key result is that the susceptibility is
suppressed substantially from the noninteracting value at
high temperature (well above Tc and into the region
where μ < 0), typically more than theories have predicted.
Since among the theoretical calculations, those
featuring stronger temperature dependence predict higher
susceptibilities in this temperature range, our measure-
ment favors those models with little temperature
dependence, such as the Fermi liquid theory (taken
from Ref. [32]) or the calculations in Refs. [28,29].
The exception is Ref. [33], whose prediction is in fact
below the data near the superfluid phase despite being
above it in the higher temperature range. This is consistent
with there being less decrease of susceptibility with
temperature than predicted in Ref. [33]. Details of how
we compare these models are presented in the
Supplemental Material [37].
In order to evaluate the susceptibility away from

unitarity, we have performed these measurements through-
out the phase diagram of the BEC-BCS crossover.
Figure 4 summarizes our main result from this perspective.
We show trap-averaged measurements of the spin

susceptibility, normalized to the value for a trapped non-
interacting gas with the same atom number at zero
temperature (to facilitate comparison to Ref. [45]). We
characterize the temperature by the ratio T=Tt

F. Similarly,
we characterize the interaction strength as ðktFaÞ−1, where
ktF ¼ ð2mkBTt

FÞ1=2. The solid curves are calculated with
our mean field model and take into account the exper-
imental density profiles, which leads to slight nonmono-
tonic behavior for trap-averaged susceptibility [45]. The
mean field model continues to agree well with our data
throughout the phase diagram (a different mean field
parameter is used for each value of the interaction strength).
Consistent with previous results [36] and theory [28,45],
we find the trap-averaged susceptibility at the onset of
superfluidity to be about 33� 3% of the noninteracting
value when ðkFaÞ−1 ¼ 0. Extrapolating our model to the
lowest temperatures, the susceptibility ratio with a uniform
noninteracting gas would be 38� 1%, slightly less than the
value of approximately 50% for a model calibrated to data
extrapolated from spin-imbalanced samples at low temper-
atures [34]. The uncertainty in these figures is purely
statistical, while any of the foreseeable systematic effects
would come from parasitic equilibration or insufficient
equilibration time and cause the measured susceptibility to
be too low. We believe the systematic effects are no
larger than 10% of the measured signal, so 4% of the

FIG. 3. Dimensionless integrated susceptibility χ̄. The acro-
nyms “NSF” and “SF” stand, respectively, for experimental data
with all nonsuperfluid and with superfluid at the center of the
trap; “NI” is the noninteracting Fermi gas result, “MF” is our
mean field model with α ¼ 1.61. “Wla13,” “Ens12,” “Taj14,” and
“Pal12” are theoretical results extracted from Refs. [28,29,32,33],
respectively, while “FL” is a Fermi liquid model extracted from
Ref. [32]. Error bars are derived from the standard deviation of
the measurements.

FIG. 4. The trap-averaged spin susceptibility normalized to the
zero-temperature noninteracting value for weak interactions and
across the BEC-BCS crossover. The red dotted line shows the
susceptibility of a noninteracting Fermi gas as a function of
temperature. Error bars are derived from the standard deviation of
many shots (for susceptibility) and from fitting uncertainty (for
temperature). Solid curves are calculated using the measured
density distribution and our mean field model under the local
density approximation, with values of the fit parameter α given by
3.5, 1.5, 1.6, and 0.9 from top to bottom.
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noninteracting value [37]. Further to the BEC side, where
ðktFaÞ−1 ¼ 0.8, the susceptibility is drastically reduced at
all temperatures.
In conclusion, we surveyed the spin susceptibility of

strongly interacting 6Li gases from the BCS side to the
BEC side and from high temperatures down to the
superfluid transition temperature. The temperature
dependence of the spin susceptibility can be modeled
reasonably throughout the phase diagram using a mean
field model. Compared to theoretical calculations, the
data show in general a lower susceptibility, particular at
temperatures above 0.5 · TF. We extracted results for the
integrated susceptibility of a uniform gas. The integra-
tion makes precise statements about the behavior
immediately above the transition difficult, but coupled
with other measurements [34,36] our high-temperature
results leave little room for a sharp decrease in suscep-
tibility with reducing temperatures. Future experiments
could likely reduce the uncertainty considerably by
increasing the fraction of imaging photons captured,
and planned experiments imaging uniform density
regions rather than integrating along the imaging axis
could resolve the region just above Tc more easily. The
closest analogy to a strong decrease of spin susceptibility
with temperature in the BEC-BCS crossover of ultracold
Fermi gases is the far BEC side, where there may be a
significant percentage reduction in the already small
susceptibility at 1.5–2 times Tc, and of course pairing
above the transition is expected in this range. All of this
sits in contrast to spectroscopic evidence showing that
even on the near BEC side coherent excitations are
absent, meaning that coherence is lost before the
temperature dependence of the susceptibility deviates
significantly from mean field form. This presents a
challenge to “general theories” of pseudogap [8], since
these two phenomena would need to occur in the same
order with respect to changes of the system parameters
(e.g., interaction strength, doping) across the various
systems where such a theory might be applied. Finally,
we mention that the method we introduced to measure
the susceptibility is versatile and can be feasibly
extended to various ultracold atom systems—for exam-
ple, spinor Bose gases, 2D gases, or gases within optical
lattices.
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