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Neutrinoless double-β (0νββ) decay of certain atomic isotopes, if observed, will have significant
implications for physics of neutrinos and models of physics beyond the standard model. In the simplest
scenario, if the mass of the light neutrino of the standard model has a Majorana component, it can mediate
the decay. Systematic theoretical studies of the decay rate in this scenario, through effective field theories
matched to ab initio nuclear many-body calculations, are needed to draw conclusions about the hierarchy of
neutrino masses, and to plan the design of future experiments. However, a recently identified short-distance
contribution at leading order in the effective field theory amplitude of the subprocess nn → ppðeeÞ
remains unknown, and only lattice quantum chromodynamics (QCD) can directly and reliably determine
the associated low-energy constant. While the numerical computations of the correlation function for this
process are underway with lattice QCD, the connection to the physical amplitude, and hence this short-
distance contribution, is missing. A complete framework that enables this complex matching is developed
in this Letter. The complications arising from the Euclidean and finite-volume nature of the corresponding
correlation function are fully resolved, and the value of the formalism is demonstrated through a simple
example. The result of this work, therefore, fills the gap between first-principles studies of the nn →
ppðeeÞ amplitude from lattice QCD and those from effective field theory, and can be readily employed in
the ongoing lattice-QCD studies of this process.
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Introduction.—The lepton-number violating process
ðA; ZÞ → ðA; Z þ 2Þ þ ee, with A and Z being, respec-
tively, the atomic and proton numbers of a parent nucleus, if
observed, will mark a major discovery. Beyond its con-
firmation of the presence of a Majorana component to the
neutrino mass [1], our knowledge of beyond-SM (BSM)
mechanisms that may be responsible for this decay can be
enhanced by combining theoretical calculations of the rate,
and other decay observables, with experimental findings
[2–4]. Furthermore, planned experimental endeavors will
crucially benefit from theoretical predictions of the
expected rates in various isotopes given the BSM scenarios
considered [2,3,5–7]. A widely considered scenario is a
minimal extension of the SM in which the light neutrinos
of the SM are promoted to Majorana neutrinos, which by
virtue of being their own antiparticles, can be emitted and
reabsorbed by the nucleus undergoing the decay. The
corresponding nuclear matrix element is long range in
nature and receives contributions from intermediate nuclear

states. Despite the long-range nature of the process, recent
nuclear effective field theory (EFT) analyses of the elemen-
tary subprocessnn → ppðeeÞ have revealed a short-distance
contribution to the amplitude at leading order (LO), with a
low-energy constant (LEC) of the corresponding isotensor
contact operator that absorbs the ultraviolet (UV) scale
dependence of the amplitude through renormalization group
(RG) [8–10].As such a subprocess cannot be observed in free
space, andgiven the program that has been formedaround the
use of nuclear EFTs to systematically improve the ab initio
nuclear structure calculations of the nuclear matrix elements
[11–15] toward experimentally relevant isotopes, the
unknownvalue of such a short-distance contribution appears
to impede progress, and has promoted several estimations
based on the connection to charge-invariance breaking
contribution to two-nucleon scattering [10], the use of
Cottingham formula in the NN sector [16], and large-Nc
considerations [17], with varying uncertainties.
Lattice QCD (LQCD), which numerically solves QCD on

a finite grid in a Euclidean spacetime, has the promise of
reliably constraining the EFTs of 0νββ in the few-nucleon
sector [18–20], and has already demonstrated its reach and
capability in constraining pionic matrix elements for lepton-
number violating processes π− → πþðeeÞ and π−π− → ee
within the light-neutrino scenario [21–23], the π− → πþðeeÞ
process within a heavy-scale scenario [24], as well as the
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(lepton-number conserving) two-neutrino double-β decay
(2νββ) of a two-nucleon state [25,26] (the latter yet at
unphysically large quark masses due to the computational
cost). LQCD matrix elements for these processes, however,
lack certain complexities compared with the desired nn →
ppðeeÞ process with a light Majorana neutrino, whose
determination is the key to matching to an EFT description.
While the numerical evaluations of the matrix elements are
underway, the interpretation of these matrix elements in
terms of the physical amplitude, and their matching to EFTs
have so far beenmissing from the course of developments. In
this Letter, such a framework will be developed and
presented for the first time. This framework, along with a
realistic example to be outlined, demonstrate how the results
of this work can be used in the upcoming studies to obtain the
short-distance LEC of the EFT from LQCD. This matching
framework builds upon major developments in recent years
in accessing local and nonlocal transition amplitudes in
hadronic physics from the corresponding finite-volume
matrix elements in Euclidean spacetime obtained with
LQCD [27–37], and, in particular, a recent work on devel-
oping a similar formalism for the two-neutrino process nn →
ppðeeν̄eν̄eÞ [38]. Nonetheless, the neutrinoless process
involves additional complexities due to a propagating neu-
trino in the intermediate state, requiring new components to
be included in the matching condition between finite and
infinite-volume matrix elements, as well as Minkowski and
Euclidean matrix elements.
EFT amplitude at leading order.—In a SM EFT of 0νββ

decay [39–46], the lepton-number (L) violating operator
with the lowest mass dimension is a Majorana mass term,

LðΔL¼2Þ
ν ¼−ðmββ=2ÞνTLCνLþH:c:Here,C ¼ iγ2γ0 denotes

the charge conjugation matrix, νL is the left-handed
(electron) neutrino field, mββ ¼

P
i U

2
eimi is the effective

neutrino mass, with Uei being the elements of the
Pontecorvo-Maki-Nakagawa-Sato (PMNS) matrix [47,48].
mi is the mass of the neutrino mass eigenstate i. While the
0νββ decay can only proceed in certain nuclear media, the
subprocess to be studied is nn → ppðeeÞ. Since quarks are
bound to nucleons and nucleons interact via the nonpertur-
bative strong force, to relate the rate of the decay to the
underlying SM EFT, one needs to map this problem to a
nuclear EFT, and constrain the EFT, e.g., using a direct
calculation of the matrix element with LQCD.
The nuclear EFT considered here is the pionless EFT

[49–53], where the Lagrangian of free and strongly
interacting nucleons can be organized as

LðQCDÞ
N ¼N†

�
i∂tþ

∇2

2M

�
N−C0ðNTPiNÞ†ðNTPiNÞþ��� :

ð1Þ
Here, ∂t is the time derivative and ∇ is the spatial gradient
operator. N ¼ ðpnÞ is an isospin doublet comprised of the
proton, p, and the neutron, n, fields, each with mass M.

Isospin symmetry will be assumed throughout. Pi ≡
ð1= ffiffiffi

8
p Þσ2τ2τi is a projector for the isotriplet channel,

and the ellipsis denotes higher-order terms in a momentum
expansion. A similar interacting term can be written for the
isosinglet channel. The effective Lagrangian for the
charged-current (CC) weak interaction is given by

LðCCÞ
N ¼ −

4VudGF

2
ffiffiffi
2

p ½ēLγμνL�½N†τþðvμ − 2gASμÞN� þ H:c:;

ð2Þ
whereGF is Fermi’s constant, Vud is a Cabibbo-Kobayashi-
Maskawa (CKM) matrix element [54,55], v and S are the
nucleon velocity and spin, respectively [v ¼ ð1; 0Þ and S ¼
ð0; σ=2Þ in the nucleon’s rest frame], τþ ¼ ðτ1 þ iτ2Þ=2
where τi are isospin Pauli metrices, and gA is the nucleon’s
axial charge. The leptonic current contains the left-handed
electron eL and neutrino νL fields. Last but not least, one
can construct a contact ΔL ¼ 2 four-nucleon-two-electron
operator in the EFT:

LðΔL¼2Þ
N ¼

�
4VudGFffiffiffi

2
p

�
2

mββgNN
ν

× ½ēLCēTL�½ðNTP−NÞ†ðNTPþNÞ� þ H:c:; ð3Þ

where Pþ ¼ ðP1 þ iP2Þ=2 [8–10]. While naive dimen-
sional analysis suggests that this operator must contribute at
a high order, RG considerations require promoting this
operator to LO [9,10], as will be discussed shortly.
The full transition amplitude for the nn → ppðeeÞ

process is not separable to the hadronic and leptonic
amplitudes given the presence of a neutrino that propagates
between the two weak currents. Nonetheless, the contri-
bution from final-state electrons (as well as constants
proportional to GF and Vud) can still be separated from
a hadronic amplitude that includes the hadronic matrix
element convoluted by the neutrino propagator. This latter
contribution is what one would evaluate in LQCD and
match to nuclear EFTs. We assume a simple kinematic in
which the total three-momenta of the system is zero, and the
electrons are at rest, each having energy E1 ¼ E2 ¼ me,
where me is the electron’s mass. Furthermore, at LO in the
EFT, two further simplifications arise: (i) only s-wave
interactions of the nucleons contribute, (ii) the amplitude
receives contributions from a static neutrino potential only,
and contributions from the small nonzero neutrino mass in
the denominator of the neutrino propagator, as well as
radiative neutrinos, can be ignored. The mixed hadronic-
leptonic amplitude can then be written as Mnn→pp≡
MðExtÞ

nn→pp þMðIntÞ
nn→pp. MðExtÞ

nn→pp denotes contributions in
which the neutrino propagates between two external nucle-

ons, see Fig. 1. On the other hand, MðIntÞ
nn→pp denotes

contributions in which the neutrino propagates between
two nucleons dressed by strong interactions on both sides,
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as shown in Fig. 1. It is this amplitude that depends upon the
short-distance LEC gNN

ν through

MðIntÞ
nn→ppðEi;EfÞ¼mββMðEfÞ½−ð1þ3g2AÞ

×J∞ðEi;Ef;μÞþ
2gNN

ν ðμÞ
C2
0ðμÞ

�MðEiÞ; ð4Þ

andwill be the subject ofmatching toLQCD.Here,Ei andEf

denote the energy of the incoming two-neutron state and the
outgoing two-proton state, respectively.M is the LO strong-
interaction scattering amplitude of the isotriplet channel,

MðEÞ ¼ −1
C−1
0 ðμÞ þ M

4π ðμþ
ffiffiffiffiffiffiffiffi
ME

p Þ ; ð5Þ

and J∞ is a function representing the s-channel two-loop
diagram with an exchanged Majorana neutrino. The two-
loop integral is divergent in the UV and in the dimensional
regularization scheme is regularized to

J∞ðEi; Ef; μÞ ¼
M2

32π2
½−γE þ lnð4πÞ þ LðEi; Ef; μÞ�; ð6Þ

whereLðEi;Ef;μÞ≡lnf½μ2=M�=½−ð ffiffiffiffiffi
Ei

p þ ffiffiffiffiffiffi
Ef

p Þ2−iϵ�gþ1

[9,10]. The UV divergence of the loop function necessitates
introduction of a counterterm at the same order, i.e., gNN

ν . μ in
these equations is a UV renormalization scale, and the
requirement of the independence of physical amplitudes

M andMðInt:Þ
nn→pp on such a scale provides RG-flow equations

for the LECsC0 and gNN
ν , respectively. It should be noted that

it is the scale-independent combination −ð1þ 3g2AÞJ∞ þ
2gNN

ν C−2
0 that can be constrained with LQCD. gNN

ν ðμÞ can
then be determined using the values ofC0 and J∞ at a given μ.
Matching between finite and infinite volume.—Keeping

the Minkowski signature of spacetime intact, we now
consider a finite spatial volume with cubic geometry and
with extent L along each Cartesian coordinate with periodic
boundary conditions. The time direction is assumed to be
infinite. Since the amplitudes cannot be defined in a finite
volume, one needs to resort to defining a correlation
function instead. At LO in the EFT (see Fig. 1),

CLðEi; EfÞ ¼ C∞ðEi; EfÞ þ BppðEfÞiF ðEfÞ;

½iMðInt:Þ
nn→ppðEi; EfÞ þmββð1þ 3g2AÞiMðEfÞ

× iδJVðEf; EiÞiMðEiÞ�iF ðEiÞB†
nnðEiÞ þ � � � : ð7Þ

B†
nn and Bpp are the matrix elements of initial- and final-

state interpolating operators between vacuum and on-shell
“in” and “out” two-nucleon states, respectively. The ellipsis
denotes terms that will not matter for the matching relation,
see Ref. [38] for further detail on a similar process. F is a
finite-volume function defined as

F−1ðEÞ ¼ F−1ðEÞ þMðEÞ; ð8Þ

with FðEÞ¼ ½ð1=L3ÞPk∈ð2π=LÞZ3−
R
d3k=ð2πÞ3�1=ðE−k2=

Mþ iϵÞ. The discretized energy eigenvalues of the two-
nucleon system in a finite volume Em are obtained from the
“quantization condition” F−1ðEmÞ ¼ 0 [56,57]. Finally, a
new finite-volume function δJV , corresponding to the two-
loop diagram with the exchanged neutrino propagator
needs to be evaluated:

δJVðEi;E1;EfÞ¼
�
1

L6

X
k1 ;k2
k1≠k2

−
Z

d3k1
ð2πÞ3

d3k2
ð2πÞ3

�

1

Ei−
k2
1

Mþ iϵ

1

Ef−
k2
2

Mþ iϵ

1

jk1−k2j2
; ð9Þ

where in the summations, k1, k2 ∈ ð2π=LÞZ3. This sum-
integral difference can be evaluated numerically for given
values of Ei and Ef, the detail of which is presented in
Supplemental Material [58] including Refs. [59,60]. The
requirement k1 ≠ k2 removes the zero spatial-momentum
mode of the neutrino in the loop to render the finite-volume
sum finite. Correspondingly, the finite-volume correlation
function in LQCD will need to implement a zero-mode
regulated neutrino propagator to match to this expression.
Such a treatment of the infrared singularities in a finite
volume is customary in the lattice QCDþ QED studies of
hadronic masses [61–63], decay amplitudes [64–66], and
two-hadron scattering [60,67].

(a)

(b)

(c)

(d) (e)

FIG. 1. Diagrams representing (a) the full LO transition
amplitude, (b) the amplitude excluding neutrino exchanges on
the external legs as expressed in Eq. (4), and (c) the finite-volume
correlation function defined in Eq. (7). The solid black circles
correspond to interpolating operators for the initial and final
isotriplet states, the solid lines are nucleon propagators, the line
with a solid black square denotes the Majorana neutrino propa-
gator, and the wavy lines represent the end point of the currents.
The ellipsis in (e) denotes the chain of s-channel two-nucleon
loops connected via C0 couplings.
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To proceed with finding the matching relation, one notes
that the finite-volume correlation function in Eq. (7) has the
same general structure as that for the two-neutrino process
obtained in Ref. [38]. As a result, all steps introduced in
Ref. [38] can be closely followed to obtain the matching
relation between finite and infinite-volume matrix ele-
ments. In particular, upon Fourier transforming Eq. (7)
with Ei and Ef to form the correlation function in the mixed
time-momentum representation, and comparing it against
the same correlation function that is obtained from a direct
four-point function upon inserting complete sets of inter-
mediate finite-volume states between the currents, one
arrives at

L6jT ðMÞ
L j2¼jRðEnfÞjjMðInt:Þ

nn→ppðEni ;EnfÞ−mββ

×ð1þ3g2AÞMðEnfÞδJVðEnf ;EniÞMðEniÞj2jRðEniÞj; ð10Þ

where RðEnÞ ¼ limE→En
ðE − EnÞF ðEÞ, and EniðfÞ denotes

a finite-volume energy of the initial (final) two-nucleon

state. T ðMÞ
L denotes the Minkowski finite-volume matrix

element defined as

T ðMÞ
L ≡

Z
dz0eiE1z0

Z
L
d3z

½hEnf ;LjT½J ðz0;zÞSνðz0;zÞJ ð0Þ�jEni ;Li�L: ð11Þ

Here, J ¼ q̄τþγμð1 − γ5Þq with q ¼ ðudÞ, which can be
implemented in LQCD calculations. At the hadronic level,
it matches to N†τþðvμ − 2gASμÞN in Eq. (2). Nonetheless,

being a quark-level current means that T ðMÞ
L also incorpo-

rates the contact ΔL ¼ 2 interaction in Eq. (3). Sνðz0; zÞ
denotes the Minkowski finite-volume propagator of a
Majorana neutrino, with its zero spatial-momentum mode
removed.
Minkowski to Euclidean matching.—The quantity T ðMÞ

L
in Eq. (11), whose connection to the physical amplitude was
established in Eq. (10), is defined with a Minkowski
signature. On the other hand, with LQCD only Euclidean
correlation functions can be evaluated. Unfortunately in the
case of nonlocal matrix elements, generally one cannot
obtain the former from the latter upon an analytical con-
tinuation [36]. To appreciate the subtlety involved, and to
introduce a procedure that, nonetheless, allows constructing
the Minkowski matrix element from its counterpart in
Euclidean spacetime, one should consider a correlation
function

GðEÞ
L ðτÞ ¼

Z
L
d3z½hEf; LjTðEÞ½J ðEÞðτ; zÞSðEÞν ðτ; zÞ

× J ðEÞð0Þ�jEi; Li�L; ð12Þ

that can be computed directly with LQCD. τ≡ iz0 is the
Euclidean time, and the superscript (E) is introduced on

Euclidean quantities. In particular, SðEÞν is the Euclidean
neutrino propagator in a finite volume with its zero spatial-
momentum mode removed:

SðEÞν ðτ; zÞ ¼ 1

L3

X
q∈ð2π=LÞZ3≠0

Z
dqðEÞ0

2π
eiq·z−iq

ðEÞ
0

τ mββ

qðEÞ20 þ jqj2

¼mββ

2L3

X
q∈ð2π=LÞZ3≠0

eiq·z

jqj ½θðτÞe
−jqjτ þ θð−τÞejqjτ�:

ð13Þ
It is now clear that simply integrating over the Euclidean time
with weight eE1τ can be problematic if on-shell intermediate
states are allowed. Here, E1 is the energy of the first or the
second electron depending on the time ordering. This can be
seen by expressing the Heisenberg-picture operator in
Euclidean spacetime as J ðEÞðτ; zÞ ¼ eP̂0τ−iP̂·zJ ðEÞð0Þ×
e−P̂0τþiP̂·z, where P̂0 and P̂ are energy (Hamiltonian) and
momentum operators, respectively, and upon inserting a
complete set of single- and multiparticle states between the
two currents. Without loss of generality, we assume that
J ðEÞð0Þ is the same as its Minkowski counterpart. The
Euclidean superscript of the Schrödinger-picture currents
will therefore be dropped. It then becomes clear that for those
values of intermediate-states energies and momenta such that
(i) jP�mj þ E�m ≤ Ef þ E1 or (ii) jP�mj þ E�m ≤ Ei − E1,
the integration over Euclidean time with eE1τ will be
divergent.Here,E�m are the finite-volume energy eigenvalues
of the intermediate spin-triplet two-nucleon state with total
momentum P�m, and we assume that three-particle inter-
mediate states with on-shell kinematics are not possible given
the initial-state energy. The problematic contributions satisfy-
ing conditions (i) and (ii) can be subtracted from Eq. (12),
leaving the rest to read

T ðEÞ≥
L ≡

Z
dτeE1τ½GðEÞ

L ðτÞ −GðEÞ<
L ðτÞ�: ð14Þ

The spectral decomposition of T ðEÞ≥
L has, therefore, exactly

the same form as theMinkowski counterpart upon an overall i
factor. Here,

GðEÞ<
L ðτÞ≡XN−1

m¼0

θðτÞcme−ðjP�mjþE�m−EfÞjτj

þ
XN0−1

m¼0

θð−τÞcme−ðjP�mjþE�m−EiÞjτj; ð15Þ

where it is assumed that there are N½N0� states satisfying
condition (i)[(ii)] above, and

cm≡ mββ

2jP�mj
½hEf;LjJ ð0ÞjE�m;LihE�m;LjJ ð0ÞjEi;Li�L:

ð16Þ
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The remaining contributions arising from on-shell inter-
mediate states, called T ðEÞ<

L , can be formed separately with
the knowledge of the single-current matrix elements in a
finite volume between the initial (final) and intermediate
states:

T ðEÞ<
L ≡XN−1

m¼0

cm
jP�mj þ E�m − Ef − E1

þ
XN0−1

m¼0

cm
jP�mj þ E�m − Ei þ E1

: ð17Þ

Equations (17) and (14) can now be combined to
construct the desired Minkowski quantity T ðMÞ

L ,

T ðMÞ
L ¼ iT ðEÞ<

L þ iT ðEÞ≥
L ; ð18Þ

whose relation to the physical nn → ppðeeÞ amplitude at
LO in the EFT was already established in Eq. (10). This

completes the matching framework that relates MðIntÞ
nn→pp in

Eq. (4), and hence the new short-distance LEC gNN
ν , to the

LQCD correlation functionGðEÞ
L ðτÞ in Eq. (12). It should be

noted that the single-current matrix elements required for
this matching relation, i.e., those appearing in Eq. (16), can
themselves be evaluated with LQCD, and can be matched
to the physical amplitude for the single-β transition
amplitude [30,38].
Discussion and outlook.—Given significant progress in

LQCD studies of nuclear matrix elements in recent years
[19,25,68–73], albeit yet with unphysical quark masses, it
is expected that LQCD will be able to evaluate the four-
point correlation function in Eq. (12), along with the
required two- and three-point functions that allow the
construction of the finite-volume Minkowski amplitude
in Eq. (18). This can then be used in Eq. (10) to constrain
the physical EFT amplitude, hence the unknown short-
distance contribution. The practicality of the method,
however, relies on the presence of only a finite (and
few) number of on-shell intermediate states that are
composed of no more than two hadrons. One can estimate
the expected nature and the number of intermediate states
by examining a plausible example. Let us take L ¼ 8 fm to
ensure the validity of the finite-volume formalism used
with physical quark masses, up to exponentially suppressed
contributions [74,75]. The finite-volume spectrum of the
two-nucleon isotriplet channel at rest arising from singu-
larities of the function in Eq. (8) can be determined using
the experimentally known phase shifts [76], giving the
ground-state energy Eni ≈ −2.6 MeV (which polynomially
approaches zero as L → ∞). A simple kinematic can be
considered for the transition amplitude such that
Eið¼ EniÞ ¼ Efð¼ EnfÞ, and where the currents carry zero
energy and momentum so that the final-state two-nucleon
system remains at rest. Given the available total energy, and

the quantum numbers of the currents, the only allowed
intermediate state is the two-nucleon isotriplet channel
at rest, whose low-lying spectrum in this volume is
Ẽ�m ≈ f−5.6; 13.9;…g MeV. While it may appear that
the ground state of this system constitutes an on-shell
intermediate state, requiring construction of the
Minkowski amplitude through an evaluation of the isosinglet
to isotriplet matrix element, one must note that since the zero
spatial momentum is not allowed for the neutrino propaga-
tion in the finite volume, none of the on-shell conditions
stated before can be satisfied with the kinematics considered
(noting that the minimum allowed energy of an on-shell
neutrino in this volume is jP�j ¼ 2π=L ≈ 155.0 MeV). As a

result, T ðMÞ
L ¼ iT ðEÞ

L ¼ i
R
dτeE1τGðEÞ

L ðτÞ, and Eq. (10) can
be readily used to obtain the physical amplitude from the

LQCD four-point function GðEÞ
L ðτÞ.

This example demonstrates that obtaining the physical
amplitude of the nn → ppðeeÞ process from LQCD is even
more straightforward than its two-neutrino counterpart, as
in the latter there is a larger kinematic phase space allowed
for on-shell intermediate states. The current framework,
therefore, takes an essential step in enabling constraints on
gNN
ν directly from LQCD in the upcoming years. Besides its
application in the 0νββ process, the formalism outlined will
find its use in a range of hadronic processes that consist of
single- or two-hadron initial, intermediate, and final states,
and where a light lepton (or photon) propagator is present,
such as in the semileptonic rare decays of the kaon [77],
and the virtual-photon contribution to charge-invariance
breaking in the two-nucleon sector [16,78].
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