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Tremendous progress has been made experimentally in the hadron spectrum containing heavy quarks in
the last two decades. It is surprising that many resonant structures are around thresholds of a pair of heavy
hadrons. There should be a threshold cusp at any S-wave threshold. By constructing a nonrelativistic
effective field theory with open channels, we discuss the generalities of threshold behavior, and offer an
explanation of the abundance of near-threshold peaks in the heavy quarkonium regime. We show that the
threshold cusp can show up as a peak only for channels with attractive interaction, and the width of the cusp
is inversely proportional to the reduced mass relevant for the threshold. We argue that there should be
threshold structures at any threshold of a pair of heavy-quark and heavy-antiquark hadrons, which have
attractive interaction at threshold, in the invariant mass distribution of a heavy quarkonium and light
hadrons that couple to that open-flavor hadron pair. The structure becomes more pronounced if there is a
near-threshold pole. Predictions of the possible pairs are also given for the ground state heavy hadrons.
Precisely measuring the threshold structures will play an important role in revealing the heavy-hadron
interactions, and thus understanding the puzzling hidden-charm and hidden-bottom structures.
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Introduction.—Quantum chromodynamics, the funda-
mental theory of the strong interaction, is nonperturbative
at low energies. As a result, the low-energy strong
interaction is notoriously difficult to be tackled with, and
so far the mechanism for the color confinement, i.e., all
quarks and gluons are confined inside color neutral
hadrons, remains the most challenging problem in the
standard model. As a manifestation of color confinement,
how the spectrum of hadrons emerges from the underlying
strong dynamics remains mysterious.
One of the most puzzling issues in hadron spectroscopy

is how the plethora of resonant structures observed since
2003 can be understood. Most of them were observed in the
invariant mass of hadrons containing heavy quarks. The
meson(-like) structures in the heavy quarkonium mass
region are called the XYZ states to emphasize that the
internal structure and why they appear in the mass spectrum
have not been understood (see Refs. [1–14] for recent
reviews).
One salient feature of the new resonant hadron structures

is that many of them have masses around the thresholds of a
pair of hadrons. To name a few famous examples, let us

mention the Xð3872Þ [15] and Zcð3900Þ� [16–18] around
the DD̄� threshold, the Zcð4020Þ� [19,20] near the D�D̄�
threshold, the Zbð10610Þ� and Zbð10650Þ� [21,22] near
the BB̄� and B�B̄� thresholds, the Zcsð3985Þ− [23] near the
D̄sD� and D̄�

sD thresholds, the Pc states [24] near the
D̄ð�ÞΣc thresholds, and the dip and peak structures in the
double J=ψ spectrum [25] near the J=ψψð2SÞ and
J=ψψð3770Þ thresholds, respectively. These structures
were suggested to be associated with threshold cusps
[26–38] (for a review, see Ref. [13]). Notice that a
pronounced threshold cusp requires the existence of a
nearby pole [39,40]. However, so far it is not known when
and at what thresholds a nontrivial structure will show up.
In this Letter, we aim to answer this question. We will
discuss the condition to have a peak at threshold, and show
that it is natural to expect structures in the final state of a
heavy quarkonium and light hadrons at the threshold of a
pair of open-heavy-flavor hadrons that have attractive
interaction at threshold.
Single channel.—Let us start with the effective range

expansion for the S-wave amplitude of a two-body scatter-
ing (see Refs. [6,12] for related discussions)

f−10 ðkÞ ¼ 1

a0
þ 1

2
r0k2 − ikþO

�
k4

β4

�
; ð1Þ

where a0 and r0 are the S-wave scattering length and
effective range, k is the magnitude of the c.m. momentum,
and β is some hard scale of the order of the inverse of force
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range. Here the sign convention for the scattering length is
such that it is negative for repulsive and positive for
attractive interaction in the absence of a bound state. In
the near-threshold region, we have the nonrelativistic
expression for the momentum k ¼ ffiffiffiffiffiffiffiffiffi

2μE
p

with μ the
reduced mass and E the energy relative to the two-body
threshold. One sees that the amplitude possesses a square-
root branch point at E ¼ 0. As a result, there is a cusp
exactly at the threshold in the modulus of the amplitude as a
function of energy.
If we focus on the region in the immediate vicinity of the

threshold, we can neglect the effective range term. Writing
the amplitude as a function of E,

f−10 ðEÞ ¼ 1

a0
− i

ffiffiffiffiffiffiffiffiffi
2μE

p
; ð2Þ

we get

jf0ðEÞj2 ¼
8<
:

1
1=a2

0
þ2μE for E ≥ 0

1
ð1=a0þ

ffiffiffiffiffiffiffiffi
−2μE

p Þ2 for E < 0
: ð3Þ

It is easy to see that for positive a0 > 0 (attractive
interaction but not strong enough to form a bound state)
this distribution is maximal, and thus has a cuspy peak, at
the threshold E ¼ 0. Notice that in this case, there is a
virtual state pole in the second Riemann sheet of the
complex energy plane at Evirtual ¼ −1=ð2μa20Þ.
In order to check what determines the shape of the cusp,

we may compute the half-maximum width of jf0ðEÞj.
It is ready to be obtained from the solutions of
jf0ðEÞj¼ jf0ð0Þj=2, Eþ¼ð3=2μa20Þ and E−¼−ð1=2μa20Þ,
and the half-maximum width is

Γcusp ¼ Eþ − E− ¼ 2

μa20
: ð4Þ

One sees that the cusp in the energy distribution is narrower
for a larger scattering length (thus stronger attraction) and
also a larger reduced mass. The former feature has been
used to precisely measure the S-wave ππ scattering lengths
[41–43]. The latter would imply that for a fixed scattering
length, the signal of the threshold cusp becomes more and
more evident when we increase the reduced mass, and it is
natural to observe them in the heavy-hidden-flavor sector.
For a negative a0, the distribution above threshold

decreases monotonically in exactly the same way as the
case of a positive a0; below threshold, the maximum is
located at the pole in the first Riemann sheet,
Ebound ¼ −1=ð2μa20Þ. For strong attraction, the pole is close
to the threshold, and leads to a near-threshold peak. For
repulsive interaction, the value of ja0j is small compared to
the range of forces; the pole is far away beyond the
applicability region of the scattering length approximation

(and thus is unphysical), and no nontrivial near-threshold
structure exists.
Although we showed that the energy distribution of

jf0ðEÞj has a maximum at the threshold for a positive a0,
the part below threshold needs to be observed in the final
state of a lower channel. Thus, we need to consider a
coupled-channel problem (see Ref. [44] for an analysis of
the Flatté parametrization) to fully exhibit the threshold
cusp structure.
Coupled channels.—Let us consider the energy region

around the highest threshold in a coupled-channel system.
Suppose that all open channels with lower thresholds are
relatively far away so that the momentum variation for
these channels around the highest threshold is smooth.
In the spirit of the optical potential we may parametrize the
scattering amplitude for the channel of interest in terms
of a complex scattering length, i.e., Eq. (2) with a0
taking a complex value. Unitarity requires a0 to satisfy
(see below)

Im
1

a0
≤ 0: ð5Þ

With a complex a0, jf0ðEÞj2 becomes

8>>>>><
>>>>>:

��
Re 1

a0

�
2

þ
�
Im 1

a0
−

ffiffiffiffiffiffiffiffiffi
2μE

p �
2
�
−1

for E ≥ 0��
Im 1

a0

�
2

þ
�
Re 1

a0
þ ffiffiffiffiffiffiffiffiffiffiffiffi

−2μE
p �

2
�
−1

for E < 0

: ð6Þ

One sees that the line shape decreases monotonically above
threshold because of the unitarity constraint, Eq. (5), and it
also decreases below threshold if the real part of 1=a0 is
positive, or Reða0Þ > 0. The half-maximum width of
jf0ðEÞj in this case is

1

μ

�
4

ja0j2
−
X
x

x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ja0j2
þ x2

s �
; ð7Þ

where the sum runs over x ¼ Imð1=a0Þ and Reð1=a0Þ.
Again the cusp width is inversely proportional to the
reduced mass.
To be more specific, let us consider a two-channel

(denoted by channel 1 and channel 2) problem and focus
on the energy region around the threshold of channel 2,
which is the higher one, such that jEj < Δ with E the c.m.
energy relative to the higher threshold and Δ the difference
between the two thresholds. One is ready to construct a
nonrelativistic effective field theory (NREFT). The c.m.
momentum of channel 2 is given by

k2 ¼
ffiffiffiffiffiffiffiffiffiffi
2μ2E

p
: ð8Þ
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The c.m. momentum of channel 1 can be expanded in
power series of E, corresponding to even powers of k2, as

k1 ¼
1

2
ffiffiffi
s

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½s − ðm1;1 þm1;2Þ2�½s − ðm1;1 −m1;2Þ2�

q

¼ 1

2Σ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔðΔþ 2m1;1ÞðΔþ 2m1;2ÞðΣ1 þ Σ2Þ

q
þOðEÞ;

ð9Þ

where mi;1 andmi;2 are the masses of particles in channel i,
Σ1 and Σ2 are the thresholds of the lower and higher
channels, respectively, and

ffiffiffi
s

p ¼ Σ2 þ E. At leading order
(LO) of the E expansion, the Bethe-Salpeter integral
equation becomes an algebraic equation, and the T matrix
can be written as

TðEÞ ¼ ½1=VΛ − GΛðEÞ�−1; ð10Þ

where GΛðEÞ is a diagonal matrix containing the Green’s
functions for both channels. Around the channel-2 thresh-
old, we treat the propagators of particles in this channel
nonrelativistically, while those for the lower channel may
be kept relativistically. That is,

GΛ
1 ðEÞ¼ i

Z
Λ1 d4q
ð2πÞ2

1

ðq2−m2
1;1þ iϵÞ½ðP−qÞ2−m2

1;2þ iϵ�

¼RðΛ1Þ− i
k1

8π
ffiffiffi
s

p ; ð11Þ

GΛ
2 ðEÞ ¼ −

1

4m2;1m2;2

Z
Λ2 d3q
ð2πÞ3

2μ2
q2 − 2μ2E − iϵ

¼ 1

8πΣ2

�
−
2Λ2

π
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μ2E − iϵ

p
þO

�
k22
Λ2

��
;

ð12Þ

with P2 ¼ s and μ2 the reduced mass of channel 2. Both
loop integrals are ultraviolet divergent, and need to be
regularized. Here, the nonrelativistic loop has been regu-
larized using a hard cutoff Λ2 > k2, for which higher order
terms of Oðk2=Λ2

2Þ will be neglected, while a different
regularization method may be applied to the relativistic
one. For the latter, we do not show the explicit expression,
but notice that the real part RðΛ1Þ can be expanded in
Taylor series of E. Although k1 can also be expanded as in
Eq. (9), we keep it explicitly as it is regulator independent.
At LO, VΛ is a symmetric constant matrix, so does its

inverse. The regulator-dependent terms in GΛ
1 and GΛ

2 can
be renormalized by the diagonal matrix elements of 1=VΛ.
Hence, we can write the T matrix, which is cutoff
independent, as

TðEÞ ¼ 8πΣ2

0
@− 1

a11
þ ik1 1

a12
1
a12

− 1
a22

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μ2E − iϵ

p
1
A−1

¼ −
8πΣ2

det

0
@ 1

a22
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−2μ2E − iϵ
p

1
a12

1
a12

1
a11

− ik1

1
A; ð13Þ

with det¼½ð1=a11Þ−ik1�½ð1=a22Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μ2E−iϵ

p �−ð1=a212Þ.
It is rather similar to the coupled-channel NREFT con-
structed in Ref. [45] (see also Ref. [46]), where both
channels are treated nonrelativistically. When the channel-
coupling parameter 1=a12 vanishes, the system is reduced
to two single channels.
Denoting the scattering length for the higher channel

including the effects from the open channel as a22;eff , one
has

1

a22;eff
¼ 1

a22
−

a11
a212ð1þ a211k

2
1Þ

− i
a211k1

a212ð1þ a211k
2
1Þ
: ð14Þ

The statement in Eq. (5) is proven.
For the production of the two particles in channel 1 in the

energy region close to the threshold of channel-2 (see
Fig. 1), the amplitude may be written as

PΛ
1 ½1þGΛ

1 T11ðEÞ� þ PΛ
2G

Λ
2 ðEÞT21ðEÞ

¼ PΛ
1 ðVΛ

11Þ−1T11ðEÞ þ ½PΛ
1 ðVΛ

11Þ−1VΛ
12 þ PΛ

2 �GΛ
2 T21ðEÞ

≡ P1T11ðEÞ þ P2T21ðEÞ; ð15Þ

where VΛ
11;12 are the elements of the VΛ matrix in Eq. (10),

and the short-distance factors P1;2 are Λ-independent,
analytic in E and can be taken as constants at LO
in the E expansion. For the second term with GΛ

2 , we have
used Λ2 > k2, and kept only the cutoff term in GΛ

2 ;
it gets multiplicatively renormalized by the prefactor
PΛ
1 ðVΛ

11Þ−1VΛ
12 þ PΛ

2 which should scale as 1=Λ2 [46].
The final expression is cutoff independent.
From analyzing the E dependence of the modulus

squared of the amplitude in Eq. (15), we can deduce the
behavior of the invariant mass distribution of particles in
the lower channel around the higher threshold. We discuss
two cases in the following. For illustration, we will show
some line shapes for a system with the lower channel being
the J=ψπ− and the higher one being the D0D�−. [Note that
we only use their masses. For analyses of the system related

FIG. 1. Production of particles in channel 1 through intermedi-
ate states in both channels.
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to the Zcð3900Þ considering more complicated dynamics,
see Refs. [47–51]]
Case 1: The production rate of channel 2 is much larger

than that of channel 1, so that the production of channel 1
mainly proceeds through the last diagram in Fig. 1; i.e.,
channel 2 is the driving channel. The event distribution is
proportional to jT21ðEÞj. We have

T21ðEÞ ¼
−8πΣ2

a12ð1=a11 − ik1Þ
�

1

a22;eff
− i

ffiffiffiffiffiffiffiffiffiffi
2μ2E

p
þOðEÞ

�
−1
:

ð16Þ

Since the only nontrivial energy dependence comes from
the nonanalytic, second piece in the square brackets in
Eq. (16), the analysis of Eq. (6) with a complex scattering
length applies. Thus, the distribution maximizes at the
higher threshold in its vicinity if the real part of a22;eff is
positive. This happens if the interaction for channel 2—
which contains two parts: direct interaction in channel 2
and corrections from the channel coupling—is attractive,
but not sufficient to produce a bound state. The red solid
and blue dashed curves in Fig. 2(a) illustrate such a
situation. The corresponding poles in the complex k2 plane
are at ð0.04–i0.08Þ and ð0.37–i0.08Þ GeV, respectively.
When the pole is closer to the threshold of channel 2, the
cusp is sharper.
It could happen that a22 > 0 is large and a11 is positive

so that the channel coupling may render Reða22;effÞ
negative, or a22 < 0 and Reða22;effÞ remains negative after
the channel coupling. In that case, the threshold would
not be a local maximum, and there would be a peak below
the higher threshold due to a below-threshold pole.
An illustration is shown as the green dotted curve in
Fig. 2(a). The pole corresponding to these parameters is
at ð−0.09–i0.08Þ GeV in the complex k2 plane.

The effective scattering length a22;eff can be extracted
using Eq. (16) from a precise measurement of the threshold
structure in this case.
Case 2: The production rate of channel 1 is much larger

than that of channel 2, so that the production of channel 1
mainly proceeds through the first two diagrams in Fig. 1.
Then, the energy dependence of the production amplitude
is dominated by that of T11ðEÞ. We have

T11ðEÞ ¼
−8πΣ2ð 1

a22
− i

ffiffiffiffiffiffiffiffiffiffi
2μ2E

p Þ
ð 1
a11

− ik1Þ½ 1
a22;eff

− i
ffiffiffiffiffiffiffiffiffiffi
2μ2E

p þOðEÞ� : ð17Þ

One sees that if the channel coupling is weak (i.e., a212 is
large), the energy dependence around the higher threshold
will be weak. However, if the channel coupling is strong,
there will be nontrivial energy dependence. For E < 0,

jT11j
8πΣ2

¼
�
k21 þ

�
1

a11
−

1

a212ð1=a22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2μ2E

p Þ
�

2
�
−1=2

:

ð18Þ

Thus, for a22 > 0 and 1=a11 ≤ a22=a212, jT11ðEÞj increases
monotonically when E decreases from 0 [the red solid
curve in Fig. 2(b) presents an example]. For E ≥ 0,

jT11j
8πΣ2

¼
��

1

a11
−

1=ða22a212Þ
1=a222 þ 2μ2E

�
2

þ
�
k1 þ

ffiffiffiffiffiffiffiffiffiffi
2μ2E

p
=a212

1=a222 þ 2μ2E

�
2
�−1=2

: ð19Þ

The second term in the square brackets maximizes at
E ¼ 1=ð2μ2a222Þ, while the first decreases for increasing
E when a22 > 0 and 1=a11 ≤ a22=a212. Thus, whether
jT11ðEÞj increases or decreases above the threshold of
channel 2 depends on the competition between the two
terms, and there must be a dip for a large ja22j because T11

has a zero at
ffiffiffiffiffiffiffiffiffiffi
2μ2E

p ¼ −i=a22; see Eq. (17).
In Fig. 2(b), we show a few typical curves for the

threshold behavior of jT11j2. They are clearly different from
those of jT21j2 shown in the left panel of the same figure.
Although there is not necessarily a visible cusp or peak,
there must be a dramatic change in the near-threshold
region if there is a nearby pole in the amplitude, as can be
seen from the red solid and green dotted curves. It is
interesting to notice that the near-threshold behavior can be
a sudden but continuous decrease around the threshold in
the line shape. Such a behavior is present around the pp̄
threshold in the η0πþπ− invariant mass distribution mea-
sured by BESIII [52].
There is an important implication to the production

mechanism for a near-threshold state which is rooted in
channel 2 (large a22): if it is observed as a peak in the final
state of a lower channel, the driving production channel
should be channel 2. Let us consider the f0ð980Þ and the

FIG. 2. Illustration of threshold behaviors. Here we use the
masses of the π− and J=ψ for channel 1 and those of the D0 and
D�− for channel-2, and the values of used aij parameters are given
in the legend. (a) Line shapes of jT21j2, which are normalized at
the threshold of channel 2, i.e., E ¼ 0; (b) line shapes of jT11j2,
which are normalized at E ¼ −0.02 GeV.
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KK̄ threshold as an example. In the J=ψ → ϕπþπ− and
J=ψ → ωπþπ− processes, the f0ð980Þ should be mainly
from the ss̄ and ðuūþ dd̄Þ sources, respectively, and thus
the KK̄ (channel-2) and ππ (channel-1) as the correspond-
ing meson channels. The driving component for the
production should be T21 and T11, respectively.
Consequently, around the KK̄ threshold, there is a narrow
peak in the πþπ− distribution for the J=ψ → ϕπþπ− [53]
and a dip around the KK̄ threshold for the J=ψ → ωπþπ−
[54]. The analysis further supports that the driving channels
for producing the Pc peaks in Λb decays are Σð�Þ

c D̄ð�Þ
[55,56], instead of J=ψp [57] or ΛcD̄ð�Þ [58].
More complex line shapes can be produced by the

interference between the two terms in Eq. (15), i.e., between
case 1 and case 2, if they have comparable strengths.
Many of the near-threshold structures have been mea-

sured in final states of the threshold channels, such as the
Zcð3900Þ in DD̄� [18], Zcð4020Þ in D�D̄� [20], Zcsð3985Þ
in D̄sD� þ D̄�

sD [23], Zbð10610Þ in BB̄� [22]. The pro-
duction amplitude should be

P2;totðEÞ ¼ P1T12ðEÞ þ P2T22ðEÞ; ð20Þ

with P1;2 the short-distance parts. The event distribution in
channel 2 is proportional to k2jP2;totðEÞj2. Since 1=a11 −
ik1 is smooth around the threshold of channel 2, the E
dependence of jT22ðEÞj should be almost the same as that
of T12ðEÞ ¼ T21ðEÞ, see Eq. (13), and thus the analysis of
case 1 above applies. In the final state of channel 2, only the
E ≥ 0 piece can show up, which means that there should
always be a near-threshold enhancement no matter the sign
of Reða22;effÞ, see Eq. (6). However, the k2 factor from the
phase space would suppress the threshold behavior if the
pole is not sufficiently close to the threshold. This, as well
as the analysis below Eq. (16), supports the conclusion in
Ref. [40] in an analysis of the Zcð3900Þ that a near-
threshold prominent cusp implies a near-threshold pole.
Discussions and conclusion.—From the discussions

above, one expects that there should always be a peak
around the threshold for a two-body system with attractive
interaction in the invariant mass distribution of a lower
channel (channel-1), if the production proceeds mainly
through the channel with the relevant threshold, i.e.,
channel 2 above. This should apply to all hadron pairs
with one containing a heavy quark and the other containing
a heavy antiquark. Because for the heavy quark-antiquark
pair to form a heavy quarkonium, the relative momentum
should be small, and it should only be a small part of the
whole phase space, the production of a pair of open-heavy-
flavor hadrons should be much easier than that for a heavy
quarkonium plus light hadrons. Consequently, it is natural
to expect that the mechanism shown as the last diagram in
Fig. 1 should be significant for the production of a heavy
quarkonium plus light hadrons when open-flavor thresh-
olds are open, and there should be a near-threshold peak if

the interaction in the open-flavor channel is attractive. The
peak is a threshold cusp if Reða22;effÞ is positive, and is a
peak just below threshold if the attraction is strong enough
to produce a below-threshold bound state such that
Reða22;effÞ becomes negative and its absolute value is
large. It is interesting to notice that with the same effective
scattering length, the larger the reduced mass is, the sharper
the peak would be.
Notice that the threshold behavior gets smeared if at least

one of the relevant intermediate particles carries a finite
width. Hence, it should be prominent only for those with
negligible or tiny widths. The existence of a triangle
singularity in special cases, when the kinematics is such
that the singularity is close to the physical region, can lead
to additional nontrivial structure at or above threshold (for a
detailed discussion, see the review [13]).
In Table I, we list heavy-antiheavy hadron pairs (taking

the charmed ones for example) that are expected to have
attractive interaction at threshold. The conclusion is based
on the one-boson exchange model with Lagrangians con-
structed considering heavy quark spin symmetry [59–61].
The pseudoscalar exchanges in the chiral limit always yield
potentials proportional to the square of transferred momen-
tum q2, which vanish at threshold. Hence, only vector-
meson exchanges are considered, which is analogous to the
vector-meson dominance contribution to the low-energy
constants in chiral perturbation theory [62] (see the
Supplemental Material [63] for a list of the potentials).
Calculations of heavy-antiheavy hadron interactions using
lattice QCD are indispensable to reach model-independent
results on which hadron pairs are attractive, and thus to
understanding whether there should be a nontrivial struc-
ture around a given threshold.

TABLE I. Charm-anticharm hadron pairs that have attractive
interaction at threshold from vector-meson exchanges (similar in
the bottom sector). We use H, T and S to denote the ground state
heavy mesons, SU(3) antitriplet and sextet heavy baryons,
respectively. Isospin is labelled for each pair in square brackets.
Those with † mean that the contribution from the light-vector
exchanges vanishes, and the attraction is provided by sub-leading
exchanges of vector charmonia [64].

HH̄ Dð�ÞD̄ð�Þ½0; 1†�; Dð�Þ
s D̄ð�Þ ½1

2
†�; Dð�Þ

s D̄ð�Þ
s ½0�

H̄T D̄ð�ÞΞc½0�; D̄ð�Þ
s Λc½0†�

H̄S D̄ð�ÞΣð�Þ
c ½1

2
�; D̄ð�Þ

s Σð�Þ
c ½1†�; D̄ð�ÞΞ0ð�Þ

c ½0�;
D̄ð�ÞΩð�Þ

c ½1
2
†�

TT̄ ΛcΛ̄c½0�; ΛcΞ̄c½12�; ΞcΞ̄c½0; 1�
TS̄ ΛcΣ̄

ð�Þ
c ½1�; ΛcΞ̄

0ð�Þ
c ½1

2
�; ΛcΩ̄

ð�Þ
c ½0†�;

ΞcΣ̄
ð�Þ
c ½3

2
†; 1

2
�; ΞcΞ̄

0ð�Þ
c ½1; 0�; ΞcΩ̄

ð�Þ
c ½1

2
�

SS̄ Σð�Þ
c Σ̄ð�Þ

c ½2†; 1; 0�; Σð�Þ
c Ξ̄0ð�Þ

c ½3
2
†; 1

2
�; Σð�Þ

c Ω̄ð�Þ
c ½0†�;

Ξ0ð�Þ
c Ξ̄0ð�Þ

c ½1; 0�; Ξ0ð�Þ
c Ω̄ð�Þ

c ½1
2
�; Ωð�Þ

c Ω̄ð�Þ
c ½0�
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It is expected that near-threshold peaks for these hadron
pairs will show up in final states of a heavy quarkonium
plus light hadrons. One also notices that the Born term
contribution from the light-boson exchange to the scatter-
ing length scales as the heavy quark mass mQ, and one
would expect it stronger in the bottom-antibottom than in
the charm-anticharm sector.
The predictions made here are ready to be tested, and the

threshold structures will play an important role in revealing
the interactions between a pair of heavy hadrons, and thus
to the mysterious hadron structures with a pair of heavy
quark and antiquark. At last, the NREFT analysis of the
threshold behavior is general enough and may find its
applications in fields other than hadron physics.
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