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We study the impact of the mixing (LR mixing) between the standard model W boson and its
hypothetical, heavier right-handed parterWR on the neutrinoless double beta decay (0νββ decay) rate. Our
study is done in the minimal left-right symmetric model assuming a type-II dominance scenario with charge
conjugation as the left-right symmetry. We then show that the 0νββ decay rate may be dominated by the
contribution proportional to this LR mixing, which at the hadronic level induces the leading-order
contribution to the interaction between two pions and two charged leptons. The resulting long-range pion
exchange contribution can significantly enhance the decay rate compared to previously considered short-
range contributions. Finally, we find that even if future cosmological experiments rule out the inverted
hierarchy for neutrino masses, there are still good prospects for a positive signal in the next generation of
0νββ decay experiments.
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Determining the properties of the light neutrinos under
charge conjugation is a key challenge for particle and
nuclear physics. As the only electrically neutral fermions in
the standard model (SM) of particle physics, neutrinos are
the sole SM candidates for possessing a Majorana mass.
The corresponding term in the Lagrangian breaks the
conservation of total lepton number (L) by two units:

LM ⊃ −yνlCHTHl=Λ, where l and H are the SM left-
handed lepton doublet and Higgs doublet, respectively, and
Λ is a mass scale whose presence is needed to maintain
dimensionality. After the neutral component of the Higgs
doublet obtains a vacuum expectation value v=

ffiffiffi
2

p
, the

resulting Majorana mass operator is LM → −ðmν=2Þνcν,
with mν ¼ yνv2=Λ. For yν ∼Oð1Þ, the observed scale
of light neutrino masses consistent with oscillation
experiments [1] and cosmological bounds [2,3] would
imply Λ≳ 1015 GeV.
An experimental determination that neutrinos are

Majorana fermions could, thus, provide circumstantial
evidence for L-violating processes at ultrahigh-energy scales
involving new particles not directly accessible in the
laboratory. In the widely considered seesaw mechanism,
the L-violating, out-of-equilibrium decays of these particles

(fermions) could generate the cosmic matter-antimatter
asymmetry [4]. Neutrino oscillation experiments are agnos-
tic regarding the existence of aMajorana neutrino mass term.
However, the observation of 0νββ decay in the nuclear
transition ðA; ZÞ → ðA; Z þ 2Þ þ e− þ e− [5]—a process
that also violates L by two units—would provide conclusive
evidence that light neutrinos are Majorana fermions [6].
The recent 0νββ decay search in the KamLAND-Zen

experiment [7] provides the most stringent upper limit on
the effective Majorana mass jmββj, which is 0.061–
0.165 eV at 90% confidence level (C.L.), where the range
reflects the uncertainty in nuclear matrix element compu-
tations. In the three-neutrino framework [8], jmββj depends
on the neutrino mass spectrum. In the inverted hierarchy
(IH) it is bounded below jmββj≳ 0.01 eV, while in the
normal hierarchy (NH) it can be vanishingly small. The
next generation of 0νββ decay searches with ton-scale
detectors [9–14] aim for sensitivities for jmββj as low as
0.01 eV. If neutrinos are Majorana fermions, and if the IH is
realized in nature, one would thus expect a nonzero result in
the ton-scale experiments.
Cosmological observations provide complementary

information on neutrino masses, currently constraining
the sum of neutrino masses (dubbed Σmν) to be smaller
than 0.12 eV at the 2σ level [15]. Global fits [2,3] of
neutrino oscillation data, 0νββ decay search results, and
cosmological surveys show that the NH is favored over
the IH at about 2σ level. For future cosmological surveys
[16–20], it is possible to exclude the IH, while the favored
jmββj may be out of the reach of ton-scale 0νββ
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decay experiments [9–14] in the three-neutrino framework.
Then, it is natural to ask how one could interpret a 0νββ
decay signal if cosmological measurements and/or future
oscillation experiments demonstrate conclusively that the
light neutrino mass ordering is in the NH.
Here, we address this question in the context of one of

the most extensively studied extensions of the SM that
generically implies the existence of Majorana neutrinos: the
minimal left-right symmetric model (LRSM) [21–26]. This
model may have TeV scale new particles and the contri-
butions to the 0νββ decay from the new right-handed sector
can be appreciable. The light neutrino and new physics
contributions are characterized by G2

Fjmββj=p2 and c=Λ5

[27–30], respectively. Here, the virtual neutrino momentum
p ≃ 100 MeV, GF is the Fermi constant, and c denotes
new Yukawa and/or gauge couplings. For c ≃Oð1Þ and
jmββj ≃ 0.1ð0.01Þ eV, the new physics contribution can be
comparable to the light neutrino contribution if
Λ ≃ 3.7ð5.9Þ TeV. In particular, it has been shown
[31,32] that in the minimal LRSM the contributions coming
from heavy neutrinos from the exchange of two right-
handed WR bosons (the RR amplitude), see Fig. 1(a), are
sizable. Nonetheless, the bulk of the minimal LRSM
parameter space would remain largely inaccessible to
ton-scale 0νββ decay searches if cosmological data push
the bound on Σmν below ∼0.1 eV.
In what follows, we show that this conclusion changes

dramatically in the presence of mixing between the left- and

right-handed gauge bosons. This mixing results in con-
tributions to the decay amplitude involving the exchange of
heavy right-handed neutrinos, one SM W boson (predomi-
nantly left-handed) and one heavyW boson (predominantly
right-handed)—a contribution we denote as the LR ampli-
tude; see Fig. 1(d). In Refs. [33,34] it was found that the LR
amplitude is suppressed with respect to the RR amplitude
due to the upper bounds on the WL −WR mixing angle.
However, those studies did not include long-range con-
tributions associated with pion exchange that significantly
enhance LR amplitude and can compensate for this
suppression [35]. It is also worthwhile to stress that the
new contributions due to the left-right mixing as depicted in
Fig. 1(d) are different from those given by the so-called λ
and η diagrams considered in Refs. [32,34]. In this Letter,
we compute these long-range contributions using state-of-
the-art information on hadronic and nuclear matrix ele-
ments as well as phenomenological constraints on the
relevant minimal LRSM parameters. We find that even in
the presence of prospective, stringent cosmological bounds
on Σmν and possible exclusion of the IH, there exists ample
opportunity for the observation of a signal in next gen-
eration 0νββ decay searches.
This framework entails extending the SM gauge group to

SUð3ÞC × SUð2ÞL × SUð2ÞR × Uð1ÞB−L, where B and L
denote the SM Abelian baryon and lepton quantum
numbers. The Higgs sector consists of two scalar triplets
ΔL ∈ ð1; 3; 2Þ, ΔR ∈ ð3; 1; 2Þ and one bidoublet
Φ ∈ ð2; 2; 0Þ, where ðX; Y; ZÞ denote the representations
under the SUð2ÞR;L and Uð1ÞB−L groups. The neutral
components of the bidoublet field Φ obtain vacuum
expectation values: hΦi → diagfv1; v2eiαg, with v ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
and α being the spontaneous CP-violating

phase.
Of particular relevance to 0νββ decay is the charged-

current Lagrangian,

LCC ¼ −
gffiffiffi
2

p
X
A¼L;R

fūAiVCKM
Aij =WAdAj

− ēAiVAij=WAνAjg þ H:c:; ð1Þ

where A ¼ L, R and VCKM
L;R and VL;R are the Cabibo-

Kobayashi-Maskawa (CKM) and lepton-mixing matrices,
respectively. The L, R gauge bosons in terms of the
light and heavy mass eigenstates W1 and W2 are given
by Wþμ

L;R ¼ cos ξWþμ
1;2 ∓ sin ξe∓iαWþμ

2;1, where tan ξ ¼
λ sinð2βÞ with tan β ¼ v2=v1 and λ ¼ M2

W1
=M2

W2
.

Direct searches for the WR boson provide a bound on
MWR

≃MW2
> 4.8 TeV [36–39], which is stronger than

the constraints in flavor-changing processes [40,41]. As ξ is
bounded above by λ, we immediately obtain that
ξ ≃ λ sinð2βÞ < 2.8 × 10−4 sinð2βÞ. A direct, albeit weaker,
bound can be achieved in superallowed nuclear β decays
[42–45], ξ cos α ≤ 1.25 × 10−3. Thus the value of ξ

(a) (b)

(c) (d)

FIG. 1. Feynman diagrams in the minimal LRSM contributing
to the 0νββ decay. Panels (a) corresponds to the RR amplitude,
panel (b) denotes the contribution from the exchange of the
doubly charged scalar, panel (c) denotes the contribution from the
exchange of the SM W boson and heavy neutrinos, while panel
(d) corresponds to the LR amplitude.
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crucially depends on β. It turns out [46,47] that if the LR
symmetry is taken to be generalized parity (P),
j sin α tanð2βÞj < 2mb=mt, with mb and mt being the
bottom and top quark masses, respectively, and no such
constraint exists when generalized charge conjugation (C)
is the LR symmetry. From the theoretical perspective, the
vacuum stability and perturbativity require MWR

≳ 6 TeV
[48] and tan β < 0.5 [see Eq. (34) in Ref. [47] ], respec-
tively. Hereafter, we will work in the case of C and assume
MWR

¼ 7 TeV and α ¼ 0.
For purposes of illustration, we follow Ref. [31] and

assume “type-II dominance” for neutrino masses [49]. In
this scenario, mNi

∝ mνi , one has VL ¼ V�
R [31]. Using the

light neutrino mass difference from solar and atmospheric
neutrinos [54], and fixing the mass of heaviest right-handed
neutrino mNmax

, which is assumed to be 500 GeV satisfying
the experimental searches [36–39,55,56], it is possible to
obtain all the neutrino masses in terms of the lightest
neutrino mass mνmin

.
The effective Lagrangian below the electroweak scale is

Leff ¼
G2

F

Λββ
½C3RðOþþ

3þ −Oþþ
3− Þðēec − ēγ5ecÞ

þ C3LðOþþ
3þ þOþþ

3− Þðēec − ēγ5ecÞ
þ C1O

þþ
1þ ðēec − ēγ5ecÞ þ C0

1O
þþ0
1þ ðēec − ēγ5ecÞ�

þ H:c:; ð2Þ

where [35]

Oþþ
3� ¼ ðq̄αLτþγμqαLÞðq̄βLτþγμqβLÞ � ðL → RÞ ð3Þ

Oþþ
1þ ¼ ðq̄αLτþγμqαLÞðq̄βRτþγμqβRÞ; ð4Þ

Oþþ0
1þ ¼ ðq̄αLτþγμqβLÞðq̄βRτþγμqαRÞ; ð5Þ

and α, β are the color indices, τ� ¼ ðτ1 � iτ2Þ=2, τ1 and τ2
are the Pauli matrices.
Wilson coefficients C3R, C3L, and C1 are obtained by

integrating out the W1;2 and Ni arising, respectively, from
the amplitudes in Figs. 1(a), 1(c), and 1(d). We evolve them
from the scale μ ¼ MW2

to an appropriately chosen
hadronic scale ΛH ¼ 2 GeV [57]. The renormalization
group evolution (RGE) proceeds in two steps:
(a) μ ¼ MW2

→ MW1
and (b) μ ¼ MW1

→ ΛH and it gives
[50,58,59]

�
C1ðΛHÞ
C0
1ðΛHÞ

�
¼

�
0.90 0

0.48 2.32

��
C1ðMW1

Þ
C0
1ðMW1

Þ
�
; ð6aÞ

C3LðΛHÞ ¼ 0.81C3LðMW1
Þ; ð6bÞ

C3RðΛHÞ ¼ 0.71C3RðMW2
Þ; ð6cÞ

where C0
1ðMW1

Þ ¼ 0 and it appears due to the RGE of C1.
In Eq. (6), the nonvanishing Wilson coefficients
at the electroweak scale are given by C1ðMW1

Þ ¼ −4λξ,
C3LðMW1

Þ ¼ ξ2, and C3RðMW2
Þ ¼ λ2ð1þ 4Λ2

ββ=M
2
ΔR
Þ,

with 1=Λββ ¼
P

3
i¼1 jVReij2=mNi

. Note that O3L ≡Oþþ
3þ þ

Oþþ
3− and Oþþ

1þ are matched to effective operators above
the electroweak scale, which however do not evolve
under QCD running [50], so that the RGE only includes
step (b).
The doubly charged scalar, depicted in Fig. 1(b),

contributes solely to C3R. When the LR symmetry
holds, this contribution is negligible due to collider
bounds [60] and charged lepton flavor violation con-
straints [31]. On the contrary, when the LR symmetry
is explicitly broken, these constraints are relaxed and
the corresponding contribution to the 0νββ decay rate
can be appreciable. For a discussion, and the possible
interplay with prospective future low- and high-
energy probes, see Ref. [61]. Here, we assume a
LR-symmetric Lagrangian and leave the analysis of
the interesting case when it is broken for a future
work.
We now map the operators in Eq. (2) at GeV scale ∼ΛH

onto an effective hadron-lepton Lagrangian below
that scale [35,50,62] using chiral perturbation theory
(χPT) [63,64]. Matching entails identifying all operators
at a given chiral order that transform under chiral SU(2) the
same way as the four-quark factor of a given operator in
Eq. (2) [35,65]. We refer the reader to Ref. [35] for a
detailed derivation, and here simply quote the results. For
another approach in which quark bilinears are mapped onto
nucleon matrix elements, one can refer to Refs. [66–68] for
generic studies of 0νββ decay and Ref. [69] in the context
of left-right symmetric models.
The hadron-lepton Lagrangian for the ππēec, N̄Nπēec,

and N̄NN̄Nēec operators up to next-to-next-to-leading
order (NNLO) in chiral expansion is [35]

LχPT ¼ G2
FF

2
π

Λββ
fΛ2

χπ
−π−ēðβ1 þ β2γ

5Þec

þ ∂μπ
−∂μπ−ēðβ3 þ β4γ

5Þec
þ Λχ=FπN̄iγ5τþπ−Nēðζ5 þ ζ6γ

5Þec
þ 1=F2

πN̄τþNN̄τþNēðξ1 þ ξ4γ5Þec
þ H:c:g: ð7Þ

The first two-pion term contributes to the amplitude
Aðnn → ppe−e−Þ at order of p−2 with p≲mπ being the
typical momentum transfer. When this leading-order (LO)
amplitude ALO is present as in the minimal LRSM,
it can give a dominant long-range contribution to the
half-life of 0νββ decay [35]. The one-pion and four-
nucleon and another two-pion terms, however, contribute
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at next-to-next-to LO to the amplitude ANNLO ∼ p0.
The dimensionless coefficients are expressed as [35]
β1 ¼ −β2 ¼ lππ

1 C1 þ lππ0
1 C0

1, β3¼−β4¼lππ
3 ðC3LþC3RÞ,

ζ5¼−ζ6¼lπN
3 ðC3LþC3RÞ, and ξ1 ¼ −ξ4 ¼ lNN

1 C1þ
lNN0
1 C0

1 þ lNN
3 ðC3L þ C3RÞ. Furthermore, gA ¼ 1.271,

Λχ ¼ 4πFπ , with Fπ ¼ 92.28 MeV, and li are the low-
energy constants (LECs). Using the lattice calculations [70],
we get lππ

1 ¼ −ð0.71� 0.07Þ, lππ0
1 ¼ −ð2.98� 0.22Þ, and

lππ
3 ¼ 0.60� 0.03 in the modified minimal substraction

(MS) scheme at μ ¼ 2 GeV [50]. The LECs for N̄Nπēec

and N̄NN̄Nēec interactions are unknown and are estimated
using the naive dimensional analysis [71] with lπN

3 ∼Oð1Þ
and lNN

1 ;lNN0
1 ;lNN

3 ∼Oð1Þ.
The four-nucleon interaction in Eq. (7) merits a more

detailed discussion. In Ref. [50], it was observed that a
consistent renormalization of the amplitude induced by the
operators Oþþ

1þ ;Oþþ0
1þ requires inclusion of a LO four-

nucleon counterterm [72]. While its presence does not
change the magnitude of the NNLO contributions (barring
accidental cancellations), it does introduce additional
hadronic uncertainties at LO. To check how this new
source of uncertainty might affect our results, we have
taken the natural assumption that this new contribution
gives an additional 100% contribution to the decay rate and
found that our conclusions remain the same. Finally and
notwithstanding the above arguments, the uncertainty
might be bigger, as suggested by the RGE analysis of
Ref. [50]. However, this issue is still far from settled until
the finite piece of the LO four-nucleon counterterm is taken
from a more reliable source, such as lattice QCD, for
instance.
From Eq. (7), we obtain the decay half-life,

ðT0ν
1=2Þ−1 ¼ G0νM2

νjmββj2
¼ G0νM2

νðjmee
ν j2 þ jmee

N j2Þ; ð8Þ
where

mee
ν ≃

X3
i¼1

jVLeij2mνið1þ lNN
ν δνNNÞ; ð9Þ

and

jmee
N j2 ¼ Λ4

χ

72Λ2
ββ

M2
0

M2
ν
× ½ðβ1 − ζ5δNπ − β3δππ þ ξ1δNNÞ2

þ ðβ2 − ζ6δNπ − β4δππ þ ξ4δNNÞ2�; ð10Þ
with mN ¼ 939 MeV and

δππ ¼
2m2

π

Λ2
χ

M2

M0

; δNπ ¼
ffiffiffi
2

p
m2

π

gAΛχmN

M1

M0

; ð11Þ

δνNN ¼ 2m2
π

g2AΛ2
χ

MNN

Mν
; δNN ¼ 12m2

π

g2AΛ2
χ

MNN

M0

: ð12Þ

Future ton-scale experiments searching for 0νββ decay
in 136Xe are considered for numerical results. The phase

1space factor G−1
0ν ¼ 7.11 × 1024 eV2 yr [73,74], and the

nuclear matrix elements Mν ¼ 2.91, M0 ¼ −2.64,
M1 ¼ −5.52 andM2 ¼ −4.20,MNN ¼ −1.53 are quoted
[75]. We obtain that δππ ¼ 0.046, δNNπ ¼ 0.042,
δνNN ¼ −0.0096, and δNN ¼ 0.063, clearly showing the
expected chiral suppression jANNLO=ALOj ∼ 15–20 or even
larger. Again, the LEC lNN

ν ∼Oð1Þ in naive dimensional
analysis and is larger, requiring LO N̄NN̄Nēec counter-
term [72].
In Fig. 2, we show the effective Majorana mass jmββj

as a function of mνmin
with mNmax

¼ 500 GeV and
MWR

¼ 7 TeV. To illustrate the impact of the LR con-
tribution, we give the allowed regions with tan β ¼ 0

(studied in Refs. [31,76]) and 0 < tan β ≤ 0.5 in darker
and lighter colors, respectively. For most of the tan β > 0

parameter space, the long-range pion exchange contribu-
tion dominates over other contributions. In Fig. 3,
we plot the jmββj as a function of

P
mν along with the

current upper bound from cosmology experiments [15]. In
particular, we see from Fig. 3 (upper panel) that in the NH,
inclusion of the long-range contribution opens up a
significant portion of parameter space accessible to
ton-scale experiments. Thus, even if the future cosmic
microwave background and large scale structure data
would exclude the IH [16], there are good prospects of
new physics at the TeV scale giving the dominant
contribution to the 0νββ decay rate in future ton-scale
experiments.

FIG. 2. Effective Majorana mass as a function of the lightest
neutrino mass. The central values of the mixing angles and the
Dirac CP-violating phase in VL are quoted from Ref. [54], and
the Majorana phases are marginalized. The allowed regions with
tan β ¼ 0 and tan β ≤ 0.5 are depicted in darker and lighter
colors. Red (green) dots denote the NH (IH) of neutrino mass
ordering. Gray and orange lines represent the current and
expected limits from the KamLAND-Zen Collaboration [7]
and future ton-scale experiment [9,10], respectively. The lightest
heavy neutrino mass is also given in the upper horizontal axis.
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