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We study smooth bubble spacetimes in five-dimensional Einstein-Maxwell theory that resemble four-
dimensional magnetic black holes upon Kaluza-Klein reduction. We denote them as topological stars since
they have topological cycles supported by magnetic flux. They can be macroscopically large compared to
the size of the Kaluza-Klein circle and could describe qualitative properties of microstate geometries for
astrophysical black holes. We also describe five-dimensional black strings without curvature singularity,
the interior caps as a two-dimensional Milne space with a bubble.
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Black holes have provided the basic theoretical labo-
ratory for exploring quantum theories of gravity. However,
the excitement for black holes is no longer theoretical.
Collisions of black holes can be observed by the LIGO
Collaboration [1], and their near environment can be
imaged [2]. In this new age of astronomy, it is interesting
to wonder whether theoretical results can lead to new
observables. The main theoretical questions are about the
nature of the degrees of freedom that can resolve black hole
singularities and how they account for microstates of the
Bekenstein-Hawking entropy.
A priori, microstates are quantumly. However, some can

be sufficiently coherent to admit a classical description as
ultracompact objects. In four dimensions, such microstates
can be contrasted with compact objects like gravastars [3]
or boson stars [4]. These constructions require exotic matter
beyond general relativity (GR) and strong fine-tunings for
which the UV origin is unclear.
In string theory, a large number of horizonless super-

symmetric “microstate geometries” have been constructed.
These resemble the black hole up to Planck-length distance
above its horizon. They are classical fuzzballs [5] and
require fluxes on nontrivial topological cycles, called
bubbles, at the vicinity of the would-be horizon. This is
the only viable mechanism supporting vast amounts of
horizon-scale structure [6]. However, most of the solutions,
from the first constructed [7] to the large classes [8–10],
except for a few [11], correspond to unrealistic black holes
for astrophysics. All constructions require sophisticated
machinery in supergravity.

In this Letter, we aim to fill the gap between beyond-GR
toy models that are convenient for phenomenology and top-
down string-theory microstate geometries. We study simple
smooth bubble geometries in four dimensions times a
circle. They look like nonextremal nonsupersymmetric
static black holes in four dimensions upon Kaluza-Klein
reduction. Their five-dimensional nature is manifest in the
region near the horizon. We refer to the solutions as
“topological stars” [12].
The solutions are constructed in the simplest possible

framework: five-dimensional Einstein-Maxwell theory. By
Kaluza-Klein reduction, they are solutions of an Einstein-
Maxwell-dilaton theory in four dimensions.
The key ingredient is to use topological cycles, as in

microstate geometries, to replace the horizon by some
degeneracy of the extra circle. A simple way to construct
them is to consider a double Wick rotation of a black string
where the time direction maps to a circle direction and vice
versa. The original horizon then becomes a region where a
circle shrinks, thereby corresponding to a bubble of nothing
[13]. The spacetime in these cases are massless and
unstable in five dimensions. Massive bubbles can be
obtained by adding suitable magnetic flux, which neces-
sitates Maxwell fields, as discussed in [14].
The radius of the extra dimension Ry must be small in the

asymptotic region in order to have effective four-dimensional
physics. It must also be larger than the string scale to avoid
quantum instabilities [15]. Regularity of magnetic bubbles fix
their size to be smaller than Ry [14]. In this Letter, we study
more interesting and nontrivial regularity conditions than in
[14] by allowing orbifold fixed points and their classical
resolution as Gibbons-Hawking bubbles. This allows for the
size of the topological star to take any value independent
from Ry. The resolution hints at additional degrees of
freedom for a richer class of microstate geometries.
We also discuss the properties of the magnetic black

strings in the five-dimensional Einstein-Maxwell theory
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with respect to which our smooth solutions should be
compared to. They are interesting on their own right. In
addition to a horizon, the interior caps as a two-dimensional
Milne space with a bubble thereby resolve the would-be
curvature singularity.
Our construction allows for a more qualitative under-

standing of bubbles as microstate geometries. The solutions
can be used for the study of black hole astrophysics and
gravitational-wave physics. Moreover, we can embed them
in string theory and explore their microstate nature from a
top-down perspective.
In the first section, we detail the framework and our

generating technique to obtain a class of spherically
symmetric solutions containing both topological stars
and black strings. We describe them in detail in the
following two sections. We discuss the phase space in
the next-to-last section and some generalizations in the final
section.
The solutions in 4þ 1 dimensions.—In this section, we

review the class of solutions of [14,16]. A bubbling
topology is induced by a shrinking circle, while other
compact directions keep a finite size. A mass can be
generated by turning on flux à la microstate geometries.
We consider solutions of five-dimensional Einstein-
Maxwell theory,

S ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
1

2κ25
R −

1

4
FμνFμν

�
; ð1Þ

that asymptote to four-dimensional Minkowski times a
circle and where κ5 is the gravitational coupling and F is
the field strength. A spherically symmetric metric ansatz
with a magnetic flux leads to

ds2 ¼ −fSðrÞdt2 þ fBðrÞdy2 þ
dr2

hðrÞ þ r2dΩ2
2;

F ¼ P sin θdθ ∧ dϕ; ð2Þ

where dΩ2
2 ¼ dθ2 þ sin2 θdϕ2. The coordinate y parametr-

izes a circle with period 2πRy. First, we consider the
vacuum solutions, P ¼ 0,

1. fSðrÞ ¼ hðrÞ ¼ 1 −
rS
r
; fBðrÞ ¼ 1; ð3Þ

2. fBðrÞ ¼ hðrÞ ¼ 1 −
rB
r
; fSðrÞ ¼ 1: ð4Þ

Solution (3) is a product of a four-dimensional
Schwarzschild black hole with a circle. It has a horizon
at r ¼ rS where the timelike Killing vector ∂t shrinks.
Solution (4) is a smooth massless solution that corresponds
to static bubble of nothing at r ¼ rB where the spacelike
Killing vector ∂y shrinks. The two solutions are related by
double Wick rotation ðt; y; rS; rBÞ → ðiy; it; rB; rSÞ.

We superpose both vacuum solutions by imposing the
double Wick rotation as a symmetry [14,16]

fBðrÞ ¼ 1 −
rB
r
; fSðrÞ ¼ 1 −

rS
r
; ð5Þ

and the equations are solved providing

hðrÞ ¼ fBðrÞfSðrÞ; P ¼ � 1

κ5

ffiffiffiffiffiffiffiffiffiffiffiffi
3rSrB
2

r
: ð6Þ

There are two coordinate singularities, a horizon at r ¼
rS and a degeneracy of the y circle at r ¼ rB. Depending on
the order, they either correspond to a massive magnetic
bubble for rB > rS or a magnetic black string for rS ≥ rB.
By Kaluza-Klein (KK) reduction along y, they are

solutions of an Einstein-Maxwell-dilaton system [17]

S4 ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2κ24
R4 −

3

κ24
∂aΦ∂aΦ −

e−2Φ

4e2
FμνFμν

�
;

ð7Þ

where κ24 ¼ κ25=2πRy and e2 ¼ 1=2πRy given by

e2Φ ¼ f−1=2B ; F ¼ � e
κ4

ffiffiffiffiffiffiffiffiffiffiffiffi
3rBrS
2

r
sin θdθ ∧ dϕ;

ds2KK ¼ f1=2B

�
−fSdt2 þ

dr2

fBfS
þ r2dΩ2

�
: ð8Þ

The four-dimensional massM and the magnetic charge Qm
are

M ¼ 2π

�
2rS þ rB

κ24

�
; Q2

m ¼ 3

2

rBrS
κ24

: ð9Þ

The topological star.—For rB > rS, the y circle shrinks
at r ¼ rB, providing an end to spacetime. We describe the
local metric taking ρ2 ¼ ½4ðr − rBÞ=rB − rS� with ρ → 0,

ds25 ¼ −
rB − rS
rB

dt2 þ r2Bds
2
4;

ds24 ¼ dρ2 þ rB − rS
4r3B

ρ2dy2 þ dΩ2
2: ð10Þ

The line element dΩ2
2 describes a two-sphere of radius rB,

while the ðρ; yÞ subspace makes a flat surface. In general,
we can allow for a conical defect and take the constant time
slices as R2=Zk × S2, k ∈ Zþ. The Penrose diagram is
summarized in Fig. 1. The orbifold condition relates the
radius of the y circle with the parameters as

k2R2
y ¼

4r3B
rB − rS

↔ rS ¼ rB

�
1 − 4

r2B
k2R2

y

�
: ð11Þ
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In general, Ry is considered as a fixed asymptotic quantity,
and therefore we interpret the regularity condition as fixing
rS. We write the mass and charge as

M ¼ 2πrB
κ24

�
3 − 8

r2B
k2R2

y

�
; Q2

m ¼ 3r2B
2κ24

�
1 − 4

r2B
k2R2

y

�
:

The radius of the bubble has an upper bound 2rB ≤ kRy. At
equality, the charge vanishes and the solution is simply a
vacuum bubble of nothing.
For macroscopic objects, we must have a bubble with

large k. For k ¼ 1, the spacetime is smooth. For k ≥ 2, there
is a source corresponding to a conical defect localized at
r ¼ rB, wrapping the bubble.
One can ask if a geometric transition can replace the

source with topology. We consider a more suitable choice
of coordinates ðϕ ¼ χ − ð1=kÞβ; y ¼ RyβÞ to study the
orbifold of the near-bubble metric (10) [18],

ds24 ¼ dρ2 þ dθ2 þ sin2θρ2

R2
β

dχ2 þ 1

k2
R2
βDβ2;

Dβ ¼ dβ − k
sin2θ
R2
β

dχ; R2
β ¼ ρ2 þ sin2θ: ð12Þ

The space is an S1β bundle over a three-dimensional base
given by ðρ; θ; χÞ. At ρ ¼ 0, the χ circle shrinks and ðθ; DβÞ
forms a S2=Zk bubble.
The connection of the S1β bundle has monopole charges k

at the north pole ðρ ¼ 0; θ ¼ 0Þ and −k at the south pole
ðρ ¼ 0; θ ¼ πÞ. Each pole corresponds to a single-center
Gibbons-Hawking (GH) space R4=Zk, with charge k. The
orbifold singularity can be classically resolved by splitting
the GH center into k centers of charge one where the β fiber
shrinks. There are two cycles between any two centers and
the singularity is replaced by a smooth space with k − 1
bubbles. They exist in a limit where their characteristic size
is much smaller than the original bubble.
Our one-bubble solution is a highly symmetric spacetime

that highlights a much richer space of states via the classical
resolution of its orbifold singularity (see Fig. 2). We can
turn on magnetic fluxes along each small bubble. We
expect large degrees of freedom on the fluxes while fixing

the conserved charge, which implies a larger class of
multibubble solutions without spherical symmetry.
The black string.—When rS > rB, the first coordinate

singularity is the horizon at r ¼ rS. It has an S1 × S2

topology where the S2 has a radius rS, while the S1 has a
radius ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rS − rB
p

=
ffiffiffiffiffi
rS

p ÞRy.
The coordinate singularity at r ¼ rB is hidden behind the

horizon. In this region, the spacelike Killing vector ∂y
shrinks, thereby defining a bubble behind the horizon. The
causal structure of the spacetime is depicted by the Penrose
diagram in Fig. 3.
Unlike (10), this bubble is a timelike surface and sits at

the origin of a two-dimensional Milne space [19] described
by the ðρ; yÞ subspace. It is defined as the quotient of R1;1

by a boost γ2 ¼ ðrS − rB=4r3BÞR2
y and corresponds to cones

in R1;1 connected at their tips. The spacetime has no
curvature singularity or closed timelike curves. However,
geodesics with y momentum are singular and experience a
Cauchy horizon. Geodesics without y momentum can be
uniquely extended past the tip of the cone. This suggests
that, if we restrict to energies and particles bellow the KK
scale, we can connect two of the black hole geometries in
Fig. 3 by identifying their bubble regions. This describes a
new class of possibly stable wormholes below the KK scale
and deserves further study.
From an external four-dimensional perspective,

we have a magnetic black hole of mass and charge
given by (9), its horizon is at r ¼ rS, and its entropy

is κ24S ¼ 8π2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3SðrS − rBÞ

q
.

FIG. 1. Penrose diagram of the topological star. The spacetime
ends as a smooth bubble at r ¼ rB.

FIG. 2. Schematic description of a generic topological star.

FIG. 3. Penrose diagram of the black string.

PHYSICAL REVIEW LETTERS 126, 151101 (2021)

151101-3



In the limit rB → rS, the bubble approaches the horizon
and the solution is an extremal black string when
rB ¼ rS ¼ m. Considering r ¼ ρ2 þm, the metric is

ds2 ¼ ρ2ðρ2 þmÞ−1½−dt2 þ dy2�
þ ρ−2ðρ2 þmÞ2½4dρ2 þ ρ2dΩ2

2�: ð13Þ

The near-horizon region ρ → 0 corresponds to a three
dimensional Anti-de Sitter (AdS) space with a two sphere,
AdS3 × S2. The radius of the AdS3 and the S2 are 2m and
m, respectively.
Phase space.—We consider the phase space of spheri-

cally symmetric solutions with fixed mass M, charge Qm,
and radius Ry. The solutions are given in terms of two
parameters ðrB; rSÞ related to ðM;QmÞ as in (9). In general,
there are two solutions for ðrB; rSÞ given ðM;QmÞ. In
Fig. 4, we plot the ranges for when topological stars and
black strings exist. On the same plot, we include the
allowed range for magnetic Reissner-Nordström black
holes (RN) in four dimensions. Note that it is not a solution
of (7) and must be seen as an illustrative comparison. Its
horizon radius is 8πRRN ¼ κ24ðM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ24M

2 − 32π2Q2
m

p
Þ.

For small mass (region 2 in Fig. 4), both solutions of
ðrB; rSÞ correspond to topological stars. However, they
exist for different choices of Ry following from the
regularity condition in (11). As the mass is increased at
fixed Qm, the bubble with the smaller radius disappears as
rB → rS, and we hit the extremality line κ4M ¼ 2π

ffiffiffi
6

p
Qm,

which corresponds to the extremal black string solution in
(13). In region 3, we have the nonextremal black string of
the previous section and a topological star with the same
mass and charge.
As the mass is further increased, we hit the cosmic

censorship bound κ4M ¼ 4π
ffiffiffi
2

p
Qm for magnetic RN black

holes. Beyond this line, topological stars, black strings, and
magnetic RN exist in the same regime. It is worth
comparing the size of each object for given ðM;QmÞ in
this regime. We denote RBH and RTS the radius of the black
hole solution and the topological star, respectively. We have

RBH ∼ RRN and RTS ¼ 2RBH: ð14Þ

The take-away message in the context of black hole
microstates is that, even if we restrict to spherically
symmetric solutions, we have smooth bubble solutions
that have the same charge and mass as the nonextremal
four-dimensional black holes. It is appropriate to interpret
this solution as a microstate of the thermal ensemble given
by the Bekenstein-Hawking entropy. It is already surprising
that such a state can be built with spherical symmetry.
Moreover, because the topological star is twice as large as
the size of its corresponding black hole, it is a rather
atypical state. This is a common story for microstate
geometries. Having solutions that scale very close to the
horizon requires one to consider multibubble solutions, that
is, to break the spherical symmetry.
Generalization.—We explore interesting generalizations

in a companion paper [20]. We generalize to Dþ 1
dimensions by imposing a similar double Wick rotation
symmetry on the D-dimensional Schwarzschild-
Tangherlini solution [21] with an extra dimension. We
also enrich the theory with higher-form fields and introduce
an electric line charge.
The generalized solutions in Einstein-Maxwell theory in

Dþ 1 dimensions with a two-form electric and (D − 3)-
form magnetic gauge fields are

ds2Dþ1 ¼ −fSðrÞdt2 þ fBðrÞdy2 þ
dr2

fSðrÞfBðrÞ
þ r2dΩ2

D−2;

fSðrÞ ¼ 1 −
�
rS
r

�
D−3

; fBðrÞ ¼ 1 −
�
rB
r

�
D−3

:

They are supported by the fields

FðmÞ ¼ PdVSD−2 ; FðeÞ ¼ Q
rD−2 dt ∧ dr ∧ dy; ð15Þ

where the magnetic and electric charges satisfy

P2 þQ2 ¼ ðD − 3ÞðD − 1ÞrD−3
S rD−3

B

2κ2Dþ1

: ð16Þ

Here dΩ2
D−2 and dVSD−2 are the line element and the volume

form of a unit (D − 2) sphere. This class of solutions has a
similar phase space as in four dimensions.
We can embed the solutions in type IIB string theory, for

D ¼ 4, 5, by considering a T9−D compactification where
ðFe; FmÞ arise from the Ramond-Ramond fields. Having a
rigid T9−D requires one to fix the electric charge with
respect to the magnetic charge. The D ¼ 5 case is a special
subject in the microstate geometry program to construct
smooth solutions that look like the extremal or nonextremal
three-charge black hole [7,8,10,22–24]. Our methods allow
the construction of the first bubbling geometries in the same
regime as the static nonextremal D1 −D5 black hole.

FIG. 4. Phase space of spherically symmetric solutions. TS,
BH, and RN stand for the topological star of the black string of
Sec. 3, and the magnetic Reissner-Nordström, respectively.
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Moreover, we can obtain a larger class of bubbling
solutions by breaking spherical symmetry. As observed in
Sec. 2, more multibubble solutions exist when the y circle is
twisted over the ϕ circle. This classically resolves the
conical defects at the poles of the bubble. As a first step, we
can construct axially symmetric multibubble solutions with
flux that generalize the Weyl formalism of [25], which has
allowed for the study of vacuum “multirod” solutions in
4þ 1 dimensions [26–29]. The latter consist of neutral
bubbles of nothing and black strings held together by struts.
We have found closed-form solutions with the addition
of a magnetic gauge field and constructed the desired
geometries [20].
The generalization to rotating solutions will be a crucial

step forward and is analogous to twisting the y circle.
Discussion.—In this Letter, we have discussed a class of

smooth bubble solutions in the same regime as nonextremal
black strings in Einstein-Maxwell theories. These are good
prototypes beyond supersymmetry to test the philosophy of
the microstate geometry program for astrophysical black
holes. Moreover, the solutions exist for masses and charges
where there are no black holes. They describe solitons in
gravity that may correspond to coherent states of quantum
gravity.
An important question to address is about stability. It is

well known that gravity with extra dimensions can lead to
instabilities. Uncharged black strings have a Gregory-
Laflamme instability that forces them to decay to stable
black holes [30], while static vacuum bubbles of nothing
are semiclassically unstable, but the presence of gauge
fields can drastically change this feature. The magnetic
black strings in Sec. 3 are free from classical linear
instability for 1

2
rS ≤ rB ≤ rS [16]. Extending to rB > rS

shows that the topological stars are classically stable for the
full range of parameters [31].
It is also interesting to study the physics of the solutions

when probed by particles, light rays, or scalar fields [32].
The difference between the black strings of Sec. 3, the
topological stars, and the usual nonrotating black holes in
GR open a new window into black hole physics that cannot
be addressed with the current microstate geometries of
extremal black holes. Studying the gravitational radiation
and Love numbers will be also very interesting for
gravitational-wave physics.
In further studies, we would like to investigate physical

mechanism for formation of topological stars. This is an
important open question that has to be explored in the
context of bubble nucleation in gravity.
Finally, we point out that the smooth bubbles can behave

as heavy particles in nature. Their sizes are bounded by the
radius of the extra dimension and therefore can be micro-
scopic. Their masses are of the order M ∼ Ry=κ24. Even if
we fix the size of the y circle to be at the string scale, these
objects have mass of order 102MP. If we allow for multi-
bubble objects, we can obtain solitons for any size, from

microscopic to macroscopic, with varying choice of mass
and charge. It is worth asking whether early Universe
processes could create stable configurations of massive
bubbles that are long-lived as possible new candidates for
dark matter.
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